Dr Michael Gray
Reader in Cellular Physiology

  • Email: m.a.gray@ncl.ac.uk
  • Telephone: +44 (0) 191 208 7592
  • Fax: +44 (0) 191 208 7424
  • Personal Website: http://research.ncl.ac.uk/epithelia/index.html
  • Address: Epithelial Research Group
    Institute for Cell and Molecular Biosciences
    The Medical School
    Newcastle University
    Framlington Place
    Newcastle upon Tyne
    NE2 4HH
    http://research.ncl.ac.uk/epithelia/

Qualifications

B.Sc. Combined (Hons) Biochem/Microbiology. University of Leeds

Ph.D. Membrane Transport. University of London 

Memberships

Elected member of The Physiological Society in 1992; Biophysical Society in 1993; American Physiological Society in 1995; Society of General Physiologists in 1996. Committee member of The Physiological Society and chairman of the Education and Information sub-committee (1997-2001). Member of the Meetings Advisory Committee of The Physiological Society 2003-2005

Currently Theme convenor of the Epithelial and Membrane Transport Theme of the Physiological Society (2010- )

Editor for Experimental Physiology (1999 - 2006).

Member of the Scientific Advisory Committee of the European Cystic Fibrosis Society (2002).

Member of the Research and Medical Advisory Committee of the Cystic Fibrosis Trust (2001- 2004).

Member of the steering committee of the UK CF Microbiology Consortium 2005- 2008.

Deputy Chairman of the Research Advisory Committee of the CF Trust (2004 - 2013).

Currently Chair of the Strategic Implementation Board of the CF Trust (2013 - ) 

 

Research Interests

The major research interest of our lab is to understand the cellular mechanisms that orchestrate epithelial ion, fluid and mucus secretion in differentiated adult epithelial tissues, and how epithelial dysfunction impacts on the pathogenesis of chronic diseases such as cystic fibrosis, pancreatitis and COPD.

Epithelial ion (salt) transport is a fundamental function of all epithelial tissues and determines whole body fluid volume, blood pressure and acid-base balance, as well as regulating absorption and secretion of fluid and macromolecules such as digestive enzymes and mucus. Numerous diseases are caused by aberrant epithelial ion transport such as hypertension, cholera, polycystic kidney disease and cystic fibrosis, the most common, life-shortening, inherited disease in the white population.  Understanding which transport proteins are involved, how they coordinate ion and fluid transport by the cell, and what goes wrong in disease is vitally important, not only for a better understanding of the biology of the system but also in developing new treatments to combat major diseases.       

Current projects are concerned with regulation of CFTR, the ion channel whose dysfunction causes cystic fibrosis, by the luminal microenvironment, role of CFTR and SLC26A anion transporters in co-ordinating pancreatic and airway bicarbonate and mucus secretion; the effect of alcohol, bile acids and cigarette smoke exposure on CFTR and other ion transporters, and the novel role of environmental CO2 in cell signalling and transport defects in the kidney and airways.

We use a multidisciplinary approach employing a range of molecular, biochemical and cell physiological techniques. Much of our work is conducted at the cellular level but employs native tissue, or primary epithelial cells, as much as possible.

Work has been funded by The Wellcome Trust, The Cystic Fibrosis Trust, The Royal Society, Kidney Research UK, Northern Counties Research Trust, AFLM, BBSRC and the MRC

Research Expertise

Patch clamp electrophysiology
Ion channel reconstitution
Fluorescent microscopy

 

Undergraduate Teaching

Stage 1 Medical . Pre-clinical lectures on cystic fibrosis and cardiovascular Physiology


Stage 1 Biomedical Science.  Cardiovascular Physiology

Stage 2 Biomedical Science. Cell and Membrane Transport, Cystic Fibrosis and  Cell Signalling

Stage 3 Biomedical Science. Undergraduate lab projects

 

External Examiner for Biomedical Sciences, Sheffield University