Abstract

The paper is an attempt to represent palatal assimilations in a unified way. Namely, palatal assimilations involve fronting or raising, in other words, spreading of the palatal element which contains these features.

However, there are several obstacles to this attempt. The representation of Velar Palatalizations in Slavonic languages implies the question of the coronal element which is present in the outcome but absent from both target and trigger segments of the process. The issue of the element R has been a constant topic of debate in standard GP theory. The paper gives an account of possible solutions offered by various phonologists and it also presents a solution of its own. I propose a combination of I and A place elements, h and ? manner elements and the head-operator relations of these four components, to account for an adequate representation of palatoids. Namely, following Keating (1988) I consider palatoids to be complex corono-dorsal segments.

Another advantage of a unified representation of umlaut and palatalization is a typology of palatal assimilations. The typology clearly shows two important facts about palatal assimilations. One of them is that the key factor determining the direction of the processes is the major category of the trigger and the target of the palatal assimilation. If it coincides, that is, if both the trigger and the target are vowels or if they are both consonants, the palatal assimilation is regressive. If, however, the segments taking part in the process are of diverse major category, the process can be bidirectional. The second observation is that the former case is preferred by Germanic and the latter is preferred by Slavonic languages.

1. Introduction

The aim of the paper is to represent palatalization and umlaut in a unified way. One condition to achieve this goal is to achieve a unified representation of palatalization and umlaut on a separately, since the terms delineate a range of rather different, though not unrelated processes. For example, palatalization is used as a cover term for lexical and post-lexical, as well as velar and coronal palatalization. As Lass (1984) notices, palatalization can mean both adding an ‘i-colour’ and changing a non-palatal into a palatal. Furthermore, the term is used to describe both addition of secondary articulation and the active process of palatalization. The term covers distinct phenomena such as velar and coronal assimilation in Slavonic languages. Umlaut, on the other hand, signifies both the phonetically grounded diachronic phonological change as well as the morphologically conditioned alternation in the adjective, noun and verb roots in Modern German.

* I am mostly indebted to my supervisor, Dr. Krisztina Polgárdi, for her help and patience. Needless to say that the remaining mistakes and errors are exclusively my responsibility.
I consider palatalization and umlaut to be two sides of the same coin. They are both assimilation processes. Palatalization is a contact assimilation of consonants, umlaut is a distant assimilation of vowels. The former is by default regressive, whereas the latter can be both progressive and regressive.

Palatalization is a place assimilation process and as such, one of the most frequent processes in the world’s languages. Phonetically, it is best described as fronting and raising, sometimes accompanied by spirantization and/or affrication. Palatalization can be triggered by front high and front mid vowels, as well as the palatal glide, depending on the language.\(^1\) Its counter-process, umlaut, is in phonetic terms defined as fronting or raising or both fronting and raising of vowels. It is triggered by either a preceding palatal consonant (e.g. in Proto-Slavonic) or by a following front vowel (e.g. in the history of Germanic languages). Consequently, umlaut can also be progressive, as in the case of Slavonic languages, and regressive, as in the case of Germanic languages.

In the theoretical framework I adopt in the paper, Government Phonology (Kaye, Lowenstamm & Vergnaud 1985), the question of palatalization involves the issue of coronals and their representation with phonological primes. On a broader scale, it even tackles the question of underspecification and markedness. An adequate representation of coronals and thus a valid account of palatal assimilations offer some cues as to which linguistic and extra-linguistic factors should be taken into account when formulating a theory of markedness.

2. Government Phonology and Element Geometry

Government Phonology (GP) is seen as one of the most abstract and radical models in that it sees phonetic differences as irrelevant when describing phonological processes. GP claims that only constructs which are motivated on purely phonological grounds should be used in phonology. The aim of the theory is ‘to replace phonetically motivated ‘distinctive features’ with a more abstract, phonologically motivated system’ (Honeybone 1996).

\(^1\) The presence of the mid vowel in the palatalization context implies the presence of the high front vowel and the palatal glide; the presence of the high vowel implies the presence of the palatal glide in the context of palatalization.
The key units of this system are the unary elements – the building blocks of sounds. Sounds are viewed as structures that consist of a melodic tier and a timing tier with slots for each timing unit. For example, diphthongs, long vowels, and geminates have two timing slots. The melodic tier is where we find the elements.

Similarly to Particle and Dependency Phonology (henceforth PP & DP respectively, Anderson & Ewen 1987, Van de Weijer 1994) and in contrast to feature theories, GP elements are embodiments of phonologically relevant contrasts such as palatality and roundness; in other words, they can be pronounced on their own and they do not need to combine with other elements (features) in order to form pronounceable articulations.

One important consequence to this premise is that, in GP, there is no distinction between vocalic and consonantial articulators since they are produced by same organs. Consequently, the inventory of elements (building blocks of GP) should be the same for consonants and vowels. This is one of the reasons I chose GP as a model for a unified representation of palatalization and umlaut. Namely, to be able to represent two processes that affect the two main groups of sounds as one process, I need to use the same elements. The element inventory is the following:

Figure 2: The inventory of elements in Government Phonology (Harris 1994)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>‘front’ in vowels / ‘palatal’ in consonants</td>
</tr>
<tr>
<td>U</td>
<td>‘round’ in vowels / ‘labial’ in consonants</td>
</tr>
<tr>
<td>A</td>
<td>‘low’ in vowels / ‘low’ in uvular and pharyngeal consonants</td>
</tr>
<tr>
<td>R</td>
<td>‘coronal’ in consonants</td>
</tr>
<tr>
<td>N</td>
<td>‘nasal’ in both consonants and vowels</td>
</tr>
<tr>
<td>h</td>
<td>‘noise’, present in all released obstruents</td>
</tr>
<tr>
<td>?</td>
<td>‘stop’, present in oral and nasal stops and laterals</td>
</tr>
<tr>
<td>L</td>
<td>slack vocal cords</td>
</tr>
<tr>
<td>H</td>
<td>stiff vocal cords</td>
</tr>
</tbody>
</table>

An inadequacy of the above inventory is that certain elements are present only in the representation of consonants and not in the representation of vowels. For example, the resonance element R is exclusive for coronal consonants and absent from vowels. One may argue that coronality as an articulatory notion was not present in vowels even in the days of SPE phonology. However, as I have already pointed out, GP does not base the definition of elements on phonetic data in the same way as binary distinctive features do. The issues concerning the coronality element are dealt with in section 4.

In this paper, I adopt the Element Geometry (EG) model of representation (Harris 1994, Harris & Lindsey 1995). It is derived from the Feature Geometry (FG) tree hierarchy but it fills the terminal nodes with unary elements, instead of binary features (non-terminal nodes are also unary in FG). The paper also utilizes certain solutions from the Dependency and Particle Phonology programmes, which are closely connected to the Government Phonology approach employed here. The main question tackled is the problem of the element coronal and its status in the element inventory of GP/EG.

2 The use of these elements is language-specific: some languages have an H–L opposition, some a nothing – L and some a nothing – H distinction. When H and L combine, we witness voiced aspirates (e.g. Guajarati or Proto Indo European).
3. Palatalization, umlaut, coronals

I attempt to unify seemingly different phenomena because it may drive us toward a better understanding of their co-occurrence in the reconstructed language, Proto-Slavonic. Namely, there is a tendency called Palatality Harmony in the ancestor of Slavonic languages, Proto-Slavonic. It refers to consonants and vowels in the same CV sequence matching in frontness. In other words, if a consonant is front, the vowel following it will be fronted, too. The three sub-processes of the tendency are palatalization, umlaut, and iotation. This latter phenomenon refers to consonants of all places of articulation merging with the palatal glide following.

Table 1: Palatality Harmony in Proto-Slavonic

<table>
<thead>
<tr>
<th>Palatal Harmony</th>
<th>Velar palatalization</th>
<th>Iotation</th>
<th>Umlaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td>velar Cs</td>
<td>all Cs</td>
<td>velar / back vowels</td>
</tr>
<tr>
<td>Triggers</td>
<td>front vowels</td>
<td>palatal glide</td>
<td>front Cs / pal glide</td>
</tr>
<tr>
<td>Processes</td>
<td>fronting, raising</td>
<td>fronting, raising</td>
<td>fronting, raising</td>
</tr>
<tr>
<td>Direction</td>
<td>regressive, progressive</td>
<td>regressive</td>
<td>regressive, progressive</td>
</tr>
</tbody>
</table>

In GP, which deals with privative units, all processes can be reduced to spreading or delinking of elements. Needless to say palatalization and umlaut are cases of element-spreading, rather than delinking, although an element may also be delinked as a consequence. The following chapters offer element geometry representations of umlaut and palatalization.

3.1. Umlaut

Umlaut is the phonological process in which back vowels are fronted due to either a following front vowel, or a specific morpheme or morphological class. The former is characteristic of the Germanic languages (according to the Lexicon of Linguistics, (eds.) Kerstens, Ruys & Zwarts). Bynon (1997: 35 – 36), for example, defines umlaut as one of the phonological changes inducing the greatest morphological change in German of all times. She claims it was triggered by phonetic factors, and became grammaticalised even when these factors ceased to be generally productive.

The status of umlaut as a type of vowel harmony or as a type of distant assimilation is not well-defined yet. Phonology coursebooks and textbooks usually consider umlaut to be a type of distant assimilation. Lass (1984) treats umlaut and vowel harmony as two types of metaphony, a distant assimilation. He also mentions that some authors use the term vowel harmony for both processes. One of them is Krygier (1997: 44), who concludes that umlaut is a harmonic process, because it harmonises the nuclei of a word according to its frontness, openness or roundness. A counter argument for Krygier’s claim is the domain of the two processes. Namely, while the domain of distant assimilation is two contiguous CV sequences, the domain of vowel harmony is a word (though which type of word – prosodic, morphological – is language-specific). Consequently, in order to decide whether umlaut is a

3 And not in the syllable, as it has been previously suggested (Kristó 2000).
of distant assimilation or a type of vowel harmony, we need to look at the following parameters:

Table 2: Differences between Vowel Harmony and Distant Assimilation

<table>
<thead>
<tr>
<th>Harmony types</th>
<th>Vowel Harmony</th>
<th>Distant Harmony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>word</td>
<td>two CV sequences</td>
</tr>
<tr>
<td>Direction</td>
<td>language-specific</td>
<td>regressive (Germanic) progressive (Proto-Slavonic)</td>
</tr>
<tr>
<td>Trigger</td>
<td>V</td>
<td>V (Germanic) C (Proto-Slavonic)</td>
</tr>
</tbody>
</table>

Umlaut in the Slavonic languages is similar to the one in the Germanic languages with respect to the outcome of the process. Both the direction and the triggers of the change are different – in Proto-Slavonic, it is the preceding palatal (soft) consonant that makes the back vowel front. The phenomenon had a morphological effect (similarly to Germanic languages). It created soft (palatal) and hard (non-palatal) variants of roots (H. Tóth 1996: 79).

Figure 3: Umlaut data

- **Old English** /450/700 – 1100/ (Hutterer 1986, Bloomfield 1979, Bynon 1997)
 - u [u:] > y [y:] > i [i] *mu:s – *my:s* i ‘mouse’ SG – PL
 - o [o:] > e [e:] *fødjan > fédan ‘food’ NOUN – VERB

- **Old High German** /800 – 1100/ (Hutterer 1986, Wolff 1990)
 - a [a] > e [e] gast – gesti ‘guest’ SG – PL
 - u [u:] > y [y:] hūt – hūte ‘today’ SG – PL

- **Middle German** /1050 – 1350/ (Hutterer 1986)

- **Modern English** /1700-/ (Bynon 1997)
 - inflection: mouse – mice full – fill
 - foot – feet hot – heat

- **Modern German** /14-16.century/ (Fodor 2000)
 - inflection: Vogel – Vögel ‘bird’ Mann > männlich ‘manly’
 - Sturm – Stürme ‘storm’ Rot > rötlich ‘red’

 - Proto-Sl Old Church Slavonic
 - u [u] > y [+] > i [i] *š’utei > šiti ‘to sew’
 - ŏ [o] > e [e] *poljo > polje ‘field’

As the sample data show, umlaut has affected a wide range of vowels in a broad variety of morphological categories (nouns, verbs, adjectives were all affected).
3.2. Representation of umlaut

In the abstract model of GP where only phonological contrasts are displayed, umlaut is straightforwardly represented as spreading of the palatal element. In the Germanic languages it is seen as a vowel harmonising process, since the element spreads from the vowel in the following syllable.

Figure 4: Representation of regressive umlaut in Germanic languages

The above example shows a positive level adjective (h\[o\]ch) fronting its back mid-high rounded vowel into a front mid-high rounded vowel (h\[ø\]her). As the representation shows, only the tongue position is affected, the other two parameters, vowel height and the shape of lips, remain unchanged. The target sound [o] consisted of elements A for back and element U for rounding, and the target sound [ø] gets an additional I element spread from the sound [ɛ] in the adjacent syllable. The two segments ‘see’ each other on the level of nuclear projection, making the spreading of the element possible across a consonant.

In the Slavonic languages, the element I spreads from the preceding palatal consonant onto the following back vowel.

Figure 5: Representation of progressive umlaut in Proto-Slavonic

In contrast to Germanic umlaut, Slavonic umlaut is progressive. The element I spreads from the consonant a palatal lateral approximant onto the target sound [o] present in the Proto-Slavonic, transforming it into a front (addition of I element) and unrounded (deletion of U element) vowel in the Old Church Slavonic equivalent of the word ‘field’.

4 Laterality is not indicated in the representation of the palatal lateral [\ primera ([\], since it is not relevant to the representation of umlaut, the important factor is the palatality element.
3.3. Palatalization

Palatalization is a place assimilatory process in which consonants assimilate to a following, (in the case of a regressive assimilation) or to the preceding (in the case of the progressive assimilation) front vowel or palatal glide (i.e. front vocoid).

The most common triggers of palatalization are the front vowels. In Ukrainian, it is only front vowels but not mid vowels that cause a change. In Russian, both the front and the mid vowels and the palatal glide affect the consonants. In Polish and Proto-Slavonic, it is the front vowels and the palatal glide that trigger palatalization of consonants. In English, however, the only trigger is the palatal glide.

Targets of palatalization are either all consonants, as in Ukrainian, Russian, and Polish Surface Palatalization), or only velars, as in Proto-Slavonic, or only coronals, as in English. In the case of the two former targets, velars and coronals, the outcome of palatalization is the group of post-alveolar/palato-alveolar affricates and fricatives (English, Proto-Slavonic). When the segments affected by Surface Palatalization are all consonants, its outcome is consonants with secondary palatal articulation or palatal consonants (Russian, Ukrainian, Polish).

The types of palatalization are established according to several different criteria. Namely, we have a lexical – post-lexical distinction, a phonemic – allophonic distinction and one according to the segments affected by the process. The three main types of palatalization are (Bhat 1978, Lahiri & Evers 1991, Jacobs & Van de Weijer 1992):

Figure 6: Types of palatalization processes according to the segments affected

1. addition of secondary articulation \(p \rightarrow p^j \)
2. shift of coronal place of articulation \(t \rightarrow tʃ \) (Coronal Palatalization, primary)
3. shift of velar place of articulation \(k \rightarrow tʃ \) (First Slavonic Palatalization, primary)

In some languages all three types of palatalization are productive, as in Russian, but in others, as for example, English, there is only one or the other palatalization process present. Figure 7 shows a summary of palatalization data systematized according to the three palatalization types:

Figure 7: Palatalization data

1. **Secondary Palatalization** all place of articulation consonants affected
 Russian minimal pairs (Kenstowicz & Kisseberth 1979):
 - brat’ – brat ‘to pick’ – ‘brother’
 - krof’ – krof ‘blood’ – ‘roof’

2. **Coronal Palatalization** alveolar stops and fricatives \([t, d, s, z]\) become palato-alveolar affricates and fricatives \([tʃ, dʒ, ʃ, ʒ]\)
First Velar Palatalization in Serbian: velar stops and fricative [k, g, x] become palato-alveolar affricate and fricative [tʃ, ʒ, ʃ].

The data show the wide variety of seemingly different processes that actually have the same outcome. It is interesting to see the same sound evolving from two completely different places of articulation, coronal and velar. Note also the manner of articulation of the sounds derived by this process – they are either fricatives or affricates. According to H. Tóth (1996), this is due to a natural tendency to balance their phonemic inventory and thus ‘fill in the empty slots’ inherited from its ancestor, Indo-European. Proto-Slavonic, for example, inherited a ‘one-sided’ consonantal inventory from Indo-European, with only two fricatives, [s] and [z], and one affricate, [ʤ]. Consequently, sounds developed in palatalization and other processes were fricatives and affricates missing from the original set of sounds.

3.4. Representation of palatalization

An adequate representation of the process of palatalization depends on an adequate representation of segments taking part in the process. Velars are represented as placeless segments, and alveolars as having only the coronal element. Affricates are represented with two root nodes and one place node, since they are considered as quantitatively simple and qualitatively complex segments in the standard GP theory.

In English, alveolars change into palatoalveolars (ʃ, ʒ, tʃ, dʒ), in Polish into alveopalatals (ɕ, ʑ, ʨ, ʥ, ʎ, ɲ, ʳ)
straightforward because the element R has nowhere to spread from, as shown in Figure 10 (Fischer 2003):

Figure 9: Representation of velar palatalization:

![Figure 9](image)

Namely, the coronal element is not present neither in the target nor in the trigger of the process. Consequently, the representation of velar palatalizations is closely connected to the issue of element coronal and the representation of coronal segments.

4. **Possible solutions to the issue of the coronal element in GP:**

A serious drawback of having a coronal element exclusively for consonants is that it implies that coronals do not form a natural class with any other group of segments. Several authors have argued against this. Namely, they do not only claim that coronals and front vowels form a natural class, but they often describe them as both having the feature coronal in their feature matrix.

Clements (1976), for example, argues for defining segments that are active in the process of palatalization, i.e. front vowels and coronal consonants as a natural class having the feature [+coronal] as the most credible feature for grouping them. Hume (1990), employing the Feature Geometry model, also groups front vowels and coronal consonants as having [+coronal] under the V-node, which in her model means coronal is a secondary vocalic feature.

Jacobs & van de Weijer (1992) state that, for a shift of coronal place of articulation, the palatal glide is a ‘stronger environment’, whereas the front vowels are a ‘stronger environment’ in the palatalization of velars. They support their claim by stating that in the underlying representation, the palatal semivowel is specified only for the Coronal Node (present in coronals), whereas the front vowels are specified only for the Dorsal Node in their UR (present in velars). In other words, the palatal glide forms a natural class with coronals and front vowels form a natural class with velars.

The question, though, is how to represent coronals and front vowels as a natural class in the GP approach. Theoretically, there are two possibilities – either with the palatal element or with the coronal element. In practice, however, representing front vowels with the element R is a rather ad hoc move. It would mean that the element R is pronounced as the high front vowel [i]. Representing them with the palatal element only would result in excluding the coronal element from the inventory of elements, a solution already proposed by Backley
As I already mentioned, it is the only resonance element present exclusively in consonants (Backley 1993, Szigetváry 1994). Eliminating the coronal element would call for a reorganization of the whole inventory of elements and representation of segments.

Broadbent (1999) disagrees with the above view of regarding coronals and palatals as being in the same natural class. She argues in favour of separating palatals as more marked segments than coronals, which are traditionally considered to be the least marked segments. In other words, she claims that palatals and coronals should not be in the same natural class according to markedness criteria.

Recent phonetic research offers another possibility regarding the issue above, the representation of palatoids. According to Keating (1988), for example, X-ray data show that both the coronal and the dorsal articulator play a role in the formation of front vowels and palatals. In other words, palatals and palatoids are complex corono-dorsal segments. Consequently, their representation should reflect this fact and they should be represented with two melodic elements, i.e. two resonance elements: I and A. Plain alveolars, however, are represented solely with the element I. The diagram illustrates the above points.

Figure 10: Representation of alveolars and palatoids

```
I   I   A   A   A
|   |   |   |
A   I   I

/s/ /ʃ/ /ɕ/ /ç/ /x/
```

The above representations show that /ç/ and /ɕ/ are represented in the same way, since they do not usually contrast within one phonemic inventory of one language. In case they nevertheless do, Van de Weijer (1994), who works in Dependency Phonology, offers a solution combining identical elements. For example, dentals are represented as having two I elements.

Standard GP, however, does not allow for this kind of an extension of the theory. Consequently, I propose a different solution. If a language contrasts five types of fricatives: alveolars, dentals, palatals, palato-alveolars and alveo-palatals, and the theory recognizes two place elements, I and A, and one manner element, h, the only solution is to combine different head-operator relations within the representations. One variation is to represent plain palatals as headed by the element I, palato-alveolars headed by the element A, and alveo-palatals as headless. Similarly to them, dentals will have a plain element I in their representation without a head, whereas alveolars will have I as a head.

5. A unified representation of palatalization and umlaut

The paper is an attempt to show a harmonised representation of palatalization and umlaut process, in other words, a unified representation of all processes which involve a spreading of the element I, irrespective of the targets, trigger, outcome or even the direction of the process. This largely depends on further research in the topic of coronality and its representation.

One important result of the analysis, however, is the typology of palatal assimilations:
Table 3: When the trigger and the target of the process belong to the same group of segments

<table>
<thead>
<tr>
<th>Type of assimilation</th>
<th>Direction of assimilation</th>
<th>Target of assimilation</th>
<th>Trigger of assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C ← C</td>
<td>palatalization, English Coronal</td>
<td>regressive</td>
<td>C</td>
</tr>
<tr>
<td>V ← V</td>
<td>umlaut, Germanic</td>
<td>regressive</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 4: When the trigger and the target of the process do not belong to the same group of segments

<table>
<thead>
<tr>
<th>Type of assimilation</th>
<th>Direction of assimilation</th>
<th>Target of assimilation</th>
<th>Trigger of assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V ← C</td>
<td>umlaut, Proto-Slavonic</td>
<td>regressive</td>
<td>V</td>
</tr>
<tr>
<td>C → V</td>
<td>palatalization, 3rd Velar</td>
<td>progressive</td>
<td>V</td>
</tr>
<tr>
<td>V → C</td>
<td>palatalization, 1st and 2nd Velar</td>
<td>progressive</td>
<td>C</td>
</tr>
</tbody>
</table>

As the above tables show, the factor that determines the direction of the process is the major category of the trigger and the target. If the major category of the trigger (vowel or consonant) matches that of the target of the process, the assimilation only acts from right to left. If, however, the trigger’s and the target’s major category differ, both directions are possible.

Another observation that directly follows from the above tables is that the Germanic languages prefer regressive palatal assimilations happening between segments of the same type, whereas the Slavonic languages show examples of assimilatory processes happening in both directions and prefer having segments of different main category affecting each other. This latter observation is closely connected to the tendency of Palatality Harmony mentioned in section 4. Namely, according to the tendency, the vowel and the consonant mutually affect each other causing the members of a CV sequence to be equal in palatality. There are no examples for the first row, for a regressive umlaut triggered by a consonant, but I believe that Palatality Harmony justifies this abstraction, since the tendency acknowledges that the direction of the vowel-consonant interaction in a CV syllable can be both progressive and regressive.

6. Conclusion

The paper examines the representation of palatalization and umlaut in a non-linear approach and its implications with respect to the issue of coronals in Government Phonology. Theoretical concepts are those of GP whereas the representational framework is Element Geometry, a merger of Feature Geometrical structure and the element inventory of Government Phonology. The unified representation of Palatality Harmony presupposes a unified representation of its separate sub-processes.
This attempt sheds light on certain issues of GP and non-linear phonology in general. In more narrow terms, the representation of palatal assimilation involves the question of coronals and their representation in a theory such as GP, which does not take phonetic data into consideration. Is coronal a valid element, should it be discarded from the inventory or simply reformulated so as to include front vowels as well? Is coronality a phonological or a phonetic notion? If the latter, how can it be implemented in a theory that does not want to utilize phonetic notions? What other characteristics of sounds should be left to phonetic implementation?

Further research questions include the still unresolved issue of the element coronal with respect to its status in element inventory of standard GP. Closely connected to this question is the issue of markedness. Recent work in this area has questioned the status of the traditionally unmarked segments, coronals. Certain phonologists (e.g. Huber 2002) have argued for placeless velars to be considered as the unmarked segments. Namely, markedness is a rather vague notion residing on factors such as complexity, frequency and occurrence in the world’s languages, child acquisition, etc. What is more, segment and process markedness sometimes predict different (even opposite) markedness relations. For example, palatalization is considered to be unmarked since it is a simple and frequent process in the world’s languages. Its outcome, however, are complex corono-dorsal segments. Consequently, do we consider palatalization to be a marked or unmarked phonological phenomenon?

The research of palatal assimilations is a wide-branching task. It is based the analyses of many different but related phenomena. The results and representational solutions can bring the linguists closer to the understanding of phonological changes and alternations.

References

Monika Fischer
University of Szeged
Juhász Gyula Teacher Training College
Department of English Language and Literature
Hattyas sor 10
H-6725 Szeged
Hungary

fischer@jgygf.u-szeged.hu