Magnetic Resonance Physics Research

Prof Andrew M. Blamire

The MR Physics group works in close collaboration with clinical colleagues in the Centre developing methods to address specific clinical questions. Through a research agreement with Philips Medical Systems we are able to program new pulse sequences on our 3T clinical scanner and develop new radio-frequency coil systems, particularly for non-proton MR measurements. We are developing a number of novel techniques and applications focussing on metabolic and physiological measurements closely allied to our clinical populations:

  • Proton spectroscopic imaging – multi-slice whole brain measurements.
  • Phosphorus-31 spectrscopy techniques - for use in skeletal muscle and heart.
  • Carbon-13 spectroscopy techniques - for use in skeletal muscle, liver and brain.
  • Lithium-7 spectroscopy techniques – for quantitative assessment of brain levels.
  • Blood flow imaging - for use in the brain and skeletal muscle.
  • 3-point Dixon imaging techniques – for quantitation of fat levels in many body areas
  • Applications of cardiac tagging – measuring heart function.

These studies are supported by a variety of funders including the MRC and the Sir Jules Thorn Charitable Trust.  More details of specific projects can be found below.

Staff profile Prof Andrew M. Blamire

Projects Supported by Major MR Physics Developments

MR Physics Publications from the MR Centre

Many of the MR Centre publications are heavily reliant on the technical developments made by the MR physics team.  The following publications describe publications solely based around team developments.

Year 2011

  • Smith FE, Cousins DA, Thelwall PE, Ferrier IN, Blamire AM. Quantitative Lithium Magnetic Resonance Spectroscopy in the Normal Human Brain on a 3T Clinical Scanner. Magnetic Resonance in Medicine 2011; 66(4):945-9
  • Chalmers KH, Kenwright AM, Parker D, Blamire AM. 19F-lanthanide complexes with increased sensitivity for 19F-MRI: Optimization of the MR acquisition. Magn Reson Med. 2011; 66(4):931-6
  • Aribisala BS, He J, Blamire AM. Comparative Study of Standard Space and Real Space Analysis of Quantitative MR Brain Data. Journal of Magnetic Resonance in Imaging 2011;33(6):1503-9
  • Smart SD, Firbank MJ, O'Brien JT. Validation of automated white matter hyperintensity segmentation. J Aging Res. 2011;2011:391783. Epub 2011 Sep 6. PubMed PMID: 21904678; PubMed Central PMCID: PMC3167190.

 

Year 2010

  • He J, Blamire AM.  Application of variable-rate selective excitation pulses for spin labelling in perfusion MRI. Magn Reson Med. 2010 Vol.63:842-84 7
  • Chalmers KH, De Luca E, Hogg NHM, Kenwright AM, Kuprov I, Parker D, Botta M, Wilson JI, Blamire, AM.  Design Principles and Theory of Paramagnetic Fluorine Labelled Lanthanide Complexes as Probes for 19F Magnetic Resonance: a Proof of Concept Study. Eur J Chem 2010. Vol. 16: 134-148.

Year 2009

  • Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magnetic Resonance in Medicine 2009; 62: 26-34.

Year 2008

  • Blamire AM. The technology of MRI - the next 10 years? British Journal of Radiology 2008;81(968):601-17
  • Firbank MJ, Barber R, Burton EJ, O’Brien, JT. 2008. Validation of a fully automated hippocampal segmentation method on patients with dementia. Human Brain Mapping 29(12), 1442-1449. http://dx.doi.org/10.1002/hbm.20480

Year 2007

  • Thelwall PE. Detection of 17O-tagged phosphate by (31)P MRS: a method with potential for in vivo studies of phosphorus metabolism. Magnetic Resonance in Medicine. 2007; Jun;57(6):1168-72.