MPhil: minimum 12 months full time; minimum 24 months part time
PhD: minimum 36 months full time; minimum 72 months part time
Fees per academic year 2013-14
UK and EU: full time £4,320 - £10,950 part time £2,160 - £5,475
International: full time £14,180 - £20,810 part time fees
More information is available about tuition fees and discounts.
Fees vary or may be higher according to the exact nature of the research project.
We can supervise MPhil and PhD projects in topics that relate to our main areas of research, which are:
Bio-energy
Our work spans the whole supply chain from growing novel feedstocks (various biomass crops, algae etc), processing them in novel ways, converting them into fuels and chemical feedstocks and developing new engines to use the products. We seek to consolidate biofuels research through translational research activities with a focus on:
The Centre for Renewable Energy from Land is being established at Cockle Park Farm and has an innovative anaerobic digestion facility. The Centre will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues. It will also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.
Novel geo-energy
New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over both the limited remaining resources of fossil fuels and the impact of using fossil fuels for energy on the environment.
Newcastle University has been awarded a Queen’s Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.
Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.
Sustainable power
We undertake fundamental and applied research into various aspects of power generation and energy systems, including: the application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines; domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils; biowaste methanisation; biomass and biowaste combustion, gasification; biomass co-combustion with coal in thermal power plants; CO2 capture and storage for thermal power systems; trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy); engine and power plant emissions monitoring and reduction technology; novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine.
Fuel cell and hydrogen technologies
We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology. Key areas of research include: biomineralisation; liquid organic hydrides; and adsorption onto solid phase, nano-porous metallo-carbon complexes.
Power electronics, drives and machines
This is one of the most rapidly developing areas of electrical power engineering, focusing on creating viable scale in power electronics and the developments this technology enables. Research is fuelled by the move towards ‘more electric’ and the desire for new and renewable energy generation. Our researchers use facilities and equipment located in the Centre for Advanced Electrical Drives to prototype leading edge solutions that meet the highest industrial standards. Our world-leading research covers several areas including: higher output fully pitched switched reluctance drives; the exploitation of insulated compacted iron powder for novel and improved performance machines; fault tolerant machines; power electronic converters; sensors and drive controllers for safety critical applications; and low cost drives with reduced sensor requirements to create very low cost solutions and very high speed.
Sustainable development and use of key resources
This research has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation. Processes have been developed to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an IChemE AspenTech Innovative Business Practice Award. Major funding has been awarded for the development of fuel cells (Newcastle is a key member of the SUPERGEN Fuel Cell Consortium) for commercial application and this has led to both patent activity and highly-cited research. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.
For more information about staff specialisms please visit the Sir Joseph Swan Centre for Energy Research.
The Science, Agriculture and Engineering Graduate School provides training in professional/key skills and research techniques, supports personal development and hosts postgraduate events.
A minimum of an upper-second-class Honours degree, or equivalent, in a relevant subject. Applications from international students are welcome. Please include as much information as possible about your qualifications to allow us to determine equivalence. Applicants whose first language is not English require IELTS 6.5 (minimum score of 5.5 in each of the sections -listening, writing, reading and speaking), TOEFL 90 (Internet-based), or equivalent.
Our INTO Newcastle University Centre can provide extra tuition to help you meet the University's English language requirements.
The UK Border Agency (UKBA) has rules for international students regarding minimum English language requirements.
The Engineering and Physical Sciences Research Council (EPSRC); Biotechnology and Biological Sciences Research Council (BBSRC); the Natural Environment Research Council (NNERC).
International Students, consult your own government for funding. The University offers International Scholarships, and there are funding opportunities by external organisations available.
Students should consult their employers for sponsorship opportunities.
Visit our postgraduate application site.
Applications are considered throughout the year although specific deadlines for funding may apply. Further application advice is available from the Faculty of Science, Agriculture and Engineering.
There are three possible start dates for your research degree:
• 7 January 2013
• 15 April 2013
• or 23 September 2013
These dates are not mandatory and in some circumstances permission can be granted for alternative start dates.
Please note: As a formal condition of the offer to study at Newcastle University, students from outside the UK and EU are required to pay a deposit of £1,500 or submit an official letter of sponsorship for their chosen programme. The deposit payment is non refundable, but will be deducted from tuition fees upon registration.
For further information please contact:
Dr Yaodong Wang
Sir Joseph Swan Centre for Energy Research
Telephone: +44 (0) 191 246 4867
E-mail: energy@ncl.ac.uk
www.ncl.ac.uk/energy/postgrad/programmes/research
This programme is within the subject area of Energy.