Marine Technology Special Collection, Newcastle University

Periodicals Histories: (only trade and industry technical magazines & research journals)

Listed in the same sequence as the Collection’s holding shown on the Collection’s website for Search Collection then Periodicals.

American Society of Naval Engineers. Journal, 1=1889 - v79=1967, continues as Naval Engineers Journal - to date, ANSE, USA. A technical research journal by a leading US learned professional engineering society. Covering all aspects of naval vessel and warship design, construction, operation, and related topics with US and international developments. Refs: ASNE https://www.navalengineers.org [accessed 14-02-2017] members only, the Collection is not a member and does not subscribe.

BSRA Journal of Abstracts, v1=1946 – v40=1985, monthly, BSRA (British Ship Research Association), Wallsend, Northumberland, England. An abstracting journal founded to provide a technical information service to the UK industry about world develops by summarising recent papers and articles published worldwide in journals, magazines, and report series. BSRA was one of a series of industry specific research associations established by the British government after WWII to help improve research and development for British industries in an increasingly competitive international market place. Subjects included shipbuilding, marine engine building, shiprepairing, shipbreaking. Although useful as a search tool its coverage of technical publications (such as journals, magazines, conferences, etc) is inconsistent and the annual indices of subjects and authors are not easy to use. Refs: none.

The process of design can perhaps best be described by taking a concrete case. We will assume that a shipbuilder has been consulted by a prospective owner to design a cargo ship, about 340 feet in length, to carry a dead weight of at least 4,000 tons, on a draft of about 23 feet 6 inches, at a speed of 10 knots at sea. Having made rough estimates of the weights, the shipbuilder can imagine the dimensions of this ship and the lines, and lay them off on a sheet of paper. Then the task is to arrive at a final shape, as nearly true as possible of what it is required to be. The next step is to determine the weight of the hull, and, second, to determine the displacement of the ship. The weight of the hull is determined by the area of the hull multiplied by the density of the material of the hull, and the displacement is determined by the area of the hull multiplied by the density of the water. These figures, together with the area of the hull, determine the capacity of the ship, and the capacity of the ship determines the size of the engines, and the size of the engines determines the speed of the ship.

Transactions of the Canadian Society of Civil Engineers, 1888 – 1918, John Lovell & Son, Montreal, Canada. A Canadian-based professional learned engineering society publishing a technical research journal. Contents includes all engineering topics with occasional marine / shipping papers. Changed name and continued as a different title not held by our Special Collection. Refs: CSCE https://csce.ca [accessed 14-02-2017] members only, the Collection is not a member and does not subscribe.

The Diesel Engine Users’ Association (DEUA). [papers?]. DEUA, UK, 1915 – 1955. A British trade association or a professional society? Title uncertain as yet but an annual research journal / transactions / proceedings of this professional engineering society’s reports and meetings. Includes some marine engine-building.

Example pages: DEUA, 1931-32, pp.1-39 [only pp.1 scanned]. “Injection, ignition and combustion high-speed heavy-oil engines”. By S. J. Davies & E. Giffen. A detailed technical paper with illustrations and tables, including discussions and author’s replies.
INJECTION, IGNITION, AND COMBUSTION IN HIGH-SPEED HEAVY-OIL ENGINES.

By S. J. DAVIES, Ph.D., M.Sc., and E. GIFFEN, M.Sc.

Paper read at the Meeting of the Diesel Engine Users Association on Tuesday, 21st March, 1931.

Although there is one successful high-speed heavy-oil engine employing air injection, it will not be disputed that the present rapid development of this type of internal combustion engine would not have taken place if a high-pressure air-compressor were an essential accessory. It is perhaps well to emphasise that from the beginning designers of engines of the pure “compression-ignition” type have striven after airless injection of the fuel, the first successful application in this connexion being that of Sir James McCoochie, of Vickers, Ltd., in 1910. Subsequent development work by Professor Hawkes and others under the Admiralty brought this method to practical success on submarine engines, and it is interesting to note that as late as 1920 almost all experience with airless injection had been gained in this country.

Engines which are the direct descendants of these early engines, namely, those in which the fuel is injected directly into a combustion chamber of simple form and, known conversely as the “direct injection” type, constitute an important section

Transactions of the Engineers Association of New South Wales, vol.1 [vol.1]=1885/6 – ceased ca.1919?. Continued as The Institution of Engineers, Australia. An Australian regional professional engineering learned society. Published a technical research journal but with very little ship or marine content. Refs: none.

[examples under construction but many examples available on the web]

European Shipbuilding, vol.1 no.1, 1952, pp.56-62 [pp.56-57 parts scanned]. “The super liberty ship ‘Boccadasse’: an interesting operation within ‘ship surgery’ carried out by means of arc-welding”. By Angelo Cassanello. Explains an unusual shiprepair and the technical problems overcome to join together two halves from two different ship wrecks to create a new ship.

Example pages: Fairplay: Shipping Journal, vol.217 no.4297, 1965 Dec 30 Thursday, pp.[part of Front Cover scanned]. “[Advert for C. F. Sharp & Company, Inc. Sharp Travel Service]”. [By the Editor]. Based in the Philippines. Interesting to note that adverts dominate the front cover of many magazine and journals. Also of note that the magazine is published every week including the Xmas and New Year period – would this happen today? Fairplay: Shipping Journal, vol.217 no.4297, 1965 Dec 30 Thursday, pp.5. “Shipbuilding shake-up” [only part of this page]. By The Look-Out Man. A brief editorial article about the impending publication of the UK government’s Geddes Report. Yet another report about the urgent need for a major shake-up and restructuring of the British shipbuilding industry for it to remain commercially competitive in the global market. Particularly changes and improvements in labour relations between the workforce, unions, and management to reduce production costs. Fairfield (Glasgow) Ltd was already in the news having emerged from mergers including the failed company Fairfield Shipbuilding and Engineering Co., Ltd.

Example pages: Feilden’s Magazine, vol.1 no.1, 1899 August, pp.2. “No apology” By Theo/Thos(?). Feilden. Editorial comment on the need for another new magazine.; pp.3-4 “Lest we forget” More editorial comments about the foreign threat to, and decline of, British industry and trade.; pp.5-6. “Facts about our ships and shipbuilding” contains a verbose explanation of world shipbuilding statistics which could be summarised, and understood clearly, in 1 table with 1 supporting paragraph of text.; pp.8-9 “The Americanising our railways” contains a jingoistic article about the ignominy of a British company the Midland Railway Company that was ordering American-built rolling stock instead of from a British supplier!
Feilden’s Magazine, vol.1 no.1, 1899 August, pp.2. “No apology” By Theo/Thos(?) Feilden. Editorial comment on the need for another new magazine.; pp.3-4 “Lest we forget” More editorial comments about the foreign threat to, and decline of, British industry and trade.; pp.5-6. “Facts about our ships and shipbuilding” contains a verbose explanation of world shipbuilding statistics which could be summarised, and understood clearly, in 1 table with 1 supporting paragraph of text.; pp.8-9 “The Americanising our railways” contains a jingoistic article about the ignominy of a British company the Midland Railway Company that was ordering American-built rolling stock instead of from a British supplier!

Feilden’s Magazine, vol.7 no.37, 1902 August, pp.95-105. [only parts of p95-96 scanned] “Floating graving docks” by S. F. Staples. Discusses at length (without any engineering/mathematical calculations), the pros and cons of a new design of floating dock for lifting and repairing Spanish warships of up to 10,000 tons.

Facts about our Ships and Shipbuilding.

There is little doubt in the average thoughtful and investigating British mind that the most pessimistic view of the general industrial situation of this country can embrace nothing which can reasonably suggest the remotest tendency towards a decline in our national resources in shipping, or in our capacity for shipbuilding. Some facts and figures, which are quoted in another part of this issue, present conclusive evidence in these particulars, and show that our old-time boast that “Britannia rules the waves” was never in the history of the nation more conclusively well founded than at the present moment. It seems that the entire tonnage of the world in ships amounts to a round total of 27,673,528 tons, of which enormous aggregate the United Kingdom and our

Golden Opinions!...

At the moment of going to press we are proud and happy to be able to chronicle the most wide-spread approval of the entrance of this Magazine into the ranks of contemporary engineering journalism. We can say with confidence that never before in the history of the trade press has such a storm of congratulatory and eulogistic comment been showered upon a new industrial publication. The conception and programme of Feilden’s Magazine appear to have met with the universal approbation not only of the daily press throughout the United Kingdom, but also of the world. The Editor has received many letters and many personal communications from friends of the Trade Press and from Press Clubs and related societies, all of which expresses approval of the Magazine in general, and of its Editor in particular, with a belief that it is a timely and necessary addition to the Press of this country.
The Americanising of our Railways...

It seems only the other day that we were all startled by the announcement that the Midland Railway Company had decided to import Baldwin locomotives from America for service in connection with its express traffic. This was the most drastic departure from the conventional in British railway administration since the introduction of Pullman cars on this side. Now we find another of our most enterprising and far-seeing railway companies—the Great Eastern—going a step further in the Americanising of our railways by introducing a system of automatic signalling and inter-

Original Signed Articles

Floating Graving Docks.

By S. F. STAPLES.

Some time ago it was found imperative to supply at the port of Havana dry dock accommodation, and that as speedily as possible. As both time and money were important factors in the case, it was impossible to have a stone dock, owing to the time such a dock would take to construct and the unsuitability of the site; so, accordingly, tenders were called for the design and construction of a steel floating dock.

In connection it may be of interest to follow their line of reasoning, and incidentally to briefly examine some of the various forms of floating docks at that time existing, noting their separate advantages and disadvantages in connection with the problem we are now dealing with.

In very busy commercial ports, where quay space can be obtained for the necessary staging, a depositing dock is very economical, if the work to be done on.
Hansa: Zeitschrift für Schifffahrt, Schiffbau, Hafen. [in German= Hansa: Magazine for Shipping, Shipbuilding, Harbours], 1864 – to date, monthly, Schifffahrts Verlag Hansa, Hamburg, Germany. Later continues as Hansa: International Maritime Journal. A German-based trade and industry technical magazine with an international coverage of ships, shipping, and maritime news. Articles in German with some in English language. Refs: Hansa http://www.hansa-online.de [accessed 14-02-2017] subscribers only, the Collection is not a member and does not subscribe.

Example pages: Hansa, vol.86 no.52, 1949 Dec 24, pp1269-1272 [1269 only scanned]. Im blickfeld: Marshallplan-Gegenwertfonds und Seeschifffahrt. This issue is published on very poor quality paper and no colour as Germany recovers from the ravages of war. Headlines are the US-led “Marshall Plan” to pour money in to Germany to aid economic recovery and to try to stabilise a democratic government in the country. Thus minimising poverty, social unrest, and avoiding another decent in chaos and Nazism &/or totalitarianism that had followed WWI.

Hansa, vol.122 no.9, 1985 May, pp969-970 [1969 only scanned]. Schiffsreparatur: Ro/Ro-Schiffe “Eyrafoss” und “Alafoss” bei HDW verlängert. A typical article, about ship lengthening, indicating a flourishing German economy and perhaps vindication of the Marshall Plan 30+ years earlier!
Schiffsreparatur

Ro/Re-Schiffe „Eyrafoss“ und „Alafoss“ bei HDW verlängert

Die Verlängerung der Schiffe erfolgte im Rahmen der Expansion der Reederei und der Anpassung an die Anforderungen der Containerfahrt. Die Verlängerung der „Eyrafoss“ um 12,5 m und der „Alafoss“ um 12,5 m erfolgte, um den Bedarf der Reeder schiff zu erfüllen. Die verlängerten Schiffe wurden im Oktober 1969 und April 1970 in Dienst gestellt und sind seitdem eine wichtige Bestandteile der Ro/Re-Flotte der HDDV.

Die HDW in Hamburg waren für die Verlängerung und Modernisierung der Schiffe verantwortlich. Die Verlängerung erfolgte durch den Aufbau von zwei neuen 12,5 m langen Längsboxen auf der linken Seite der Schiffe. Die Längsboxen wurden mit modernsten Technologien ausgestattet, um die Effizienz der Schiffe zu erhöhen.

Die Schiffsreparatur und Modernisierung führte dazu, dass die Schiffe nun auch für den Transport von Großcontainerschiffen geeignet waren. Die HDW arbeiteten eng mit der Reederei zusammen, um die Anforderungen der Kunden zu erfüllen und die Schiffe optimal zu modernisieren.

Example Pages: [under construction]

Example Pages: Hansa: Shipbuilding – Marine Engineering. And Shipbuilding Herald, vol.5 no.12 Feb 1957, pp.31- [only part of p31 scanned]. Scanning the horizon. By Mercator.
Example Pages: Hansa: Shipbuilding – Marine Engineering. And Shipbuilding Herald, vol.5 no.12 Feb 1957, pp.31- [only part of p40-41 scanned]. ‘Van Rees standard series of dismountable cutter profile dredgers’.
Van Rees Standard Series of Dismountable Cutter Profile Dredgers

N.V. Scheepssbouwvark v.h. C. M. van Rees, Skiedrecht, has developed a standard type of dismountable cutter profile dredger which has been well-received, in Holland as well as abroad. This shows that the dredger fulfils present-day requirements. Already 18 of these dredgers have been delivered, while another two are still under construction for well-known dredging contractors.

In the meantime the dredger is still being improved and adapted to modern technical developments.

The dredger hull has the following dimensions:

- **Length** 45,00 m.
- **Breadth** 8 m.
- **Depth** 2,50 m.

It consists of seven sections with dimensions and weights tuned to the requirements of road, rail and water-borne transport. The heaviest section, which measures 18 x 3,40 x 2,50 metres, has a maximum weight of 70 tons. As all deck machinery and fittings can be removed to a height of 230 mm above deck level, the height of profile is such that the craft can pass under low bridges, while the use of stabilizing pontoon enables it to pass under bridges or through locks with a maximum width of 6 metres.

By splitting the ladder and by the application of two 3-drum winches as well as a separate hoisting winch with adjustable transmission, the dredger can be used as:

a. Cutter dredger with a maximum cutter depth of 16 m.

b. Profile dredger with a maximum profile depth of 20 m.

c. Section dredger for great depths, by means of a sand-pump on the ladder. The cutter is then driven by an electric motor.

The suction dredger can be mounted and dismantled while afloat by means of the stabilising pontoon. The latter can easily be converted into a floating crane with a hoisting capacity of 16 tons and at the same time is suitable for the carriage of fuel and potable water. The high degree of stability, sufficient freeboard and great pull of the winches make the dredger entirely suitable for use in open water and in currents. Optimum production is obtained under...

This specialist magazine was launched in response to the rapid increase in ground-effect vehicles which had been pioneered in the UK. Changes in magazine title reflected how the market had expanded to include many different types of high-speed craft including ground-effect craft, hovercraft, hydrofoils, catamarans, and eventually to be dominated by the fast ferries which is now the main civil use of high-speed surface craft.

Example pages: Hovering Craft and Hydrofoil, vol.1 no.1, 1961 Oct, pp.1. “[Front cover showing ‘Sirena’]”; Pp.3. “First commercial GEM. Setting the pace”. Outlines the rapid rise in commercial high-speed hydrofoil craft but that as yet no ground-effect-machines (GEM) are in commercial operation.

Hovering Craft and Hydrofoil, vol.1 no.1, 1961 Oct, pp.26-27 [only part scanned]. “Design and operating problems of commercial hydrofoil boats”. By H. von Schertel. Briefly explains the development of commercial hydrofoil craft and the rapidly increasing demand for fast passenger and cargo craft due to their speed and economic advantages compared with other marine craft and aircraft over short distances. Shows the ‘Sirena’ as an example.

High-Speed Surface Craft, vol.21 no.12, 1982 Dec, pp.1 “[Front cover]” including photograph of British Hovercraft Corporation AP.1-88 ; pp.3 “[Contents]”; pp.4-10 [only pp.7 scanned] “Genoa 1982: 22nd Salone Nautico: A brief
VICKERS HOVERCRAFT PROGRAMME ANNOUNCED

The basic design of the first generation of these craft combines a primary principle in the form of a field of a still planets, taking the distributed pressure of the air cushion on the Fairey T1A and FFR engines, and distributing it to the air through the propeller. The hovercraft’s operation is based on the principles of the hovercraft. It is the craft’s ability to provide the operator with a cushion in house, pitch and roll, and to maintain the effects of side and yawing movements. Models have been built, and are used by various manufacturers. The work continues, to determine the operational behavior and ground hovering effects. To follow up these tests a research craft by the Hovercraft.
DESIGN AND OPERATING PROBLEMS OF COMMERCIAL HYDROFOIL BOATS

by Baron H. von Schertel
(Supramar A.G., Lucerne)

It has taken a comparatively long period of time (some 50 years) to develop the hydrofoil boat into a type of craft now commercially applied as a “new” means of transportation. By comparison, development or airplanes, roughly starting at the same time as that of hydrofoil boats, proceeded at a very much faster pace. Indeed, the airplanes have now reached a very high degree of perfection, while interest in and development of hydrofoil craft have not been steady over the years. One reason for slow progress in the art of “flying” in water may have rested in a number of hydrodynamic problems, not encountered in air. Even after solving such problems, a number of well-performing experimental boats were simply disregarded. However, it appears that the new means of waterborne transportation was considered with suspicion, and practical application was prevented by the tendency of ship owners and operators to stick to the traditional, conventional and conservative types of marine vessel then.

Speed and Economy

Foils-supported craft can be designed for comparatively high speeds, and they can operate at such speeds with reasonable efficiency. This is to say that at higher Froude numbers (or speed-size ratios) hydrofoil systems are known to function at drag over weight ratios below those of conventional motorboats (either of the planing or of the non-planing type). In conclusion, hydrofoil boats must be expected to be comparatively economical as far as size of machinery and fuel consumption is concerned (as well as with size). In certain sizes and speed ranges where other types of water-borne craft cannot very well operate effectively.

In Figure 1, the specific power requirements of various water-borne vehicles (railroads) was already far advanced. Since then, aircraft have been perfected to such a degree that today more passengers cross the Atlantic by air than by ship. This indicates that most people prefer speed (saving time) rather than relaxation while travelling. Such preference for speed is particularly evident in short-distance trips across water, wherever means of transportation specified by the conventional waterborne type are made available. Examples for such situations might be lakes (or Long Island Sound) or boat lines on rivers (or along the coast) or, last but not least, ferry services such as to and between islands.

After the arrival (availability) of reliable hydrofoil craft, another change seems to develop within the short-distance sector of waterborne transportation. Because of their high cruising speed, up to three times as high as that of previously existing conventional boat lines, foil-supported craft appear quite capable of competing even with the high-speed trains.

A unit weight of 11 lb/h.p., including the minimum for a range of 300 km. Taking also into account some material necessary to strengthen the planing bottom, the dead weight of this craft is then expected to be at least 3 tons higher than that of the hydrofoil boat. The equivalent loss of passengers (on a weight basis) is in the order of 37. The number of paying passengers is, in other words, reduced to 1/3 half, while the expenses for machinery and fuel are roughly doubled. Experience in commercial passenger transportation proves that applying the foil-supported type of carrier, a yearly net profit can be obtained in the order of some 40 per cent of capital invested. On the other hand, using the planing type of boat, no profit can be expected at all under the conditions of operations as stated above.

(to be continued)
Marine Technology Special Collection, Newcastle University, United Kingdom. Periodicals Histories A-H

... and Kawasaki Heavy Industries

Kawasaki Heavy Industries has released details of the first Jetfoil 929-117 hydrofoils to be built at its Kobe yard since the company signed a license agreement with Boeing Marine Systems. The first of these is scheduled to be delivered to Sado Kisen Kaisha in March. Fitted out for 266 passengers, it will join the 929-100 and two 929-115 already operated between Niigata and Ryotsu on Sado island.

A 265-seat version will then be delivered to Kagoshima Shosen in June for a route linking Kagoshima, Nishioomote on Tanegashima Island and Miyakojima on Yaku Island. The other two craft will both be built in Nagasaki. Japan Ocean Cruise Line is to introduce one, configured for only 180 passengers, in September on an international service to Cheju in South Korea. The fourth Jetfoil off the Japanese production line, a 282-seat variant, will then be delivered to Kyushu Shosen Kaisha next March for a route to Fukuoka and Nara in the Goto Islands.

1988 Deliveries and orders

Yet another record year for fast ferry deliveries and orders. With 70 vessels launched in 1988, 50% more than during the previous year, and outstanding orders accounting for another 75, approximately the same number as at the end of 1986, there is little sign of a levelling off of activity in the industry. Some yards could still ship craft in the final quarter of 1989 but this situation is unlikely to last very much longer. Deliveries for the second quarter of 1990 are already being confirmed.

The continuing reluctance of builders or operators to disclose financial details and fluctuations in international exchange rates makes any conversion into a single currency or assessment of the total value of the market fairly meaningless. The final column of the listing now details the country the vessel was delivered to rather than a contract price.

Deliveries not previously reported in the magazine include an A. Fai Incat 21m catamaran to the PRC, an International Catamarans Tasmania Incat 37m wave piercer to New Zealand, a Lloyd's Ships Crowther 35.9m catamaran to Singapore, a Sabre Catamarans Sabre 55 100 seat catamaran crewboat within Australia, a Sea Management 17m 70 seat catamaran within Australia and an SFCN 54.6m monohull to the French Antilles.

Previously unreported orders include another A. Fai Incat 21m catamaran for the PRC, an FBM Marine Teknik Ship builders 34 CPV catamaran for Malaysia, two Fjellstrand 38.6m catamarans for Spain, a Gladding-Hearn Incat 27m waterjet powered catamaran within the United States, a Hovermarine 218 surface effect ship for Turkey and two more Rodriguez RHS 160F hydrofoils for Italy being built by Seaspeed (Malta).

For the purposes of the listing, a fast ferry or crewboat is considered to be a vessel, delivered or ordered for commercial service, capable of carrying at least 30 passengers or equivalent payload and having a minimum service speed of 25 knots. Where a contract has not involved a new craft, the year of construction is listed in brackets. Where the sale of a boat has resulted in a change of name, this is indicated in the right hand column of the listing.

No low speed designs or high speed vessels ordered for non-commercial or military service are included in the following pages. Consequently, production activity at some of the yards during 1989 may be greater than a listing of just the fast ferries built would suggest.

<table>
<thead>
<tr>
<th>1988 deliveries and orders according to craft type and size</th>
<th>Deliveries</th>
<th>Outstanding orders</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catamarans</td>
<td>38</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>Hovercraft</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hydrofoils</td>
<td>5</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Monohulls</td>
<td>16</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>SWATH FDC</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Surface effect ships</td>
<td>7</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Wave piercing catamarans</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>75</td>
<td>145</td>
</tr>
</tbody>
</table>

www.ncl.ac.uk/engineering/about/facilities/marineoffshoresubseatechnology/specialcollection/ 04/12/2018
Deliveries and Orders

<table>
<thead>
<tr>
<th>Vessel name</th>
<th>Yard No</th>
<th>Vessel type</th>
<th>Delivery</th>
<th>Operator</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fai Engineers & Shipbuilders</td>
<td>129</td>
<td>Incat 21m catamaran</td>
<td>December</td>
<td>Shenzhen Shipping Company</td>
<td>PRC</td>
</tr>
<tr>
<td>Allen Marine</td>
<td>??</td>
<td>Drake 30.5m catamaran</td>
<td>June</td>
<td>Alaska Catamaran</td>
<td>United States</td>
</tr>
<tr>
<td>Aluminium Shipbuilders</td>
<td>10</td>
<td>Incat 17m catamaran</td>
<td>April</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Barclays Bank</td>
<td>11</td>
<td>Incat 17m catamaran</td>
<td>May</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>London Docklands</td>
<td>12</td>
<td>Incat 17m catamaran</td>
<td>May</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Daily Telegraph</td>
<td>13</td>
<td>Incat 17m catamaran</td>
<td>July</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Chelsea Harbour</td>
<td>14</td>
<td>Incat 17m catamaran</td>
<td>August</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Dehlerham Trescon</td>
<td>15</td>
<td>Incat 17m catamaran</td>
<td>September</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>and Chintocks</td>
<td></td>
<td>Incat 17m catamaran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbour Exchange</td>
<td>86</td>
<td>Otto I. Scheer Jr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To see the history of more titles please visit the Collection’s website for **Search Collection** then **Periodicals Histories**.

How to contact the Collection:

The Marine Technology Special Collection
Newcastle University
Room 3.32
Armstrong Building
Queen Victoria Road
Newcastle upon Tyne
NE1 7RU
United Kingdom

Email: marine.archive@newcastle.ac.uk
Telephone: +44 (0) 191 20 83522
or 86718 (Enquiries)
URL:
www.ncl.ac.uk/marine/facilities/specialcollection/