Periodicals Histories: (only trade and industry technical magazines & research journals)

Listed in the same sequence as the Collection’s holding shown on the Collection’s website for Search Collection then Periodicals.

American Society of Naval Engineers. Journal, 1=1889 - v79=1967, continues as **Naval Engineers Journal** - to date, ANSE, USA. A technical research journal by a leading US learned professional engineering society. Covering all aspects of naval vessel and warship design, construction, operation, and related topics with US and international developments. Refs: ASNE https://www.navalengineers.org [accessed 14-02-2017] members only, the Collection is not a member and does not subscribe.

BSRA Journal of Abstracts, v1=1946 – v40=1985, monthly, BSRA (British Ship Research Association), Wallsend, Northumberland, England. An abstracting journal founded to provide a technical information service to the UK industry about world develops by summarising recent papers and articles published worldwide in journals, magazines, and report series. BSRA was one of a series of industry specific research associations established by the British government after WWII to help improve research and development for British industries in an increasingly competitive international market place. Subjects included shipbuilding, marine engine building, shiprepairing, shipbreaking. Although useful as a search tool its coverage of technical publications (such as journals, magazines, conferences, etc) is inconsistent and the annual indices of subjects and authors are not easy to use. Refs: none.

Cassier's Magazine: an Engineering Monthly. Including occasional special numbers called **Marine Number**. Louis Cassier Co, New York, USA & London, UK, vol.1=1891 – vol.? tbc=1913. A technical magazine with substantial engineering papers, mainly US but some UK. Some parts also included **Cassier's Engineering Abstracts**. The Marine Number of 1897 contains general papers about marine engineering, shipbuilding, naval architecture, and related topics.

THE DESIGN AND BUILDING OF A STEAMSHIP.

By Archibald Dunlop, M. Inst. N. A.

To correctly design a steamship, the naval architect must draw from a store of information gradually accumulated either by himself or by his predecessors. In a well-arranged office the technical data of vessels built is most carefully calculated in an easily accessible form for each item as weights, cubic contents, stability, and speed; these data are generally put in the form of coefficients of the principal dimensions, so that rough approximations may, in the first instance, be arrived at, before the final design is taken in hand.

The process of design can perhaps best be described by taking a concrete case. We will assume that a shipbuilder has been asked by a prospective owner to design a cargo ship, about 300 feet in length, to carry a dead weight of at least 3,000 tons, on a draft of about 33 feet 3 inches, at a speed of 10 knots at sea. From his previous experience the designer chooses, let us assume, dimensions 300 feet by 40 feet by 30 feet 6 inches, and he must now, by rough calculation, see if these dimensions approximately meet the conditions.

The first thing is to calculate the weight of the hull. For convenience the hull weight is usually divided into two parts,—first, the steel work proper; and second, what is generally called "wood and outfit." This latter comprises all the remainder, such as deck, cabin fittings, anchors, and chains, cement in the bottom, rigging, small

We have, then, 1,700 tons as the weight of hull.

efficient values, according to type of vessel, between large limits, say, 0.30 to 0.35. In such a steamer as this, it may be taken at 0.35; thus 3775 x 0.35 = 1,316 tons. In a similar way the "wood and outfit" coefficient is fixed to vary between 0.05 and 0.15. In such a steamer as this it would be about 0.1; thus 3775 x 0.1 = 377.5 say, 360 tons.

[examples under construction]

[examples under construction]

Transactions of the Canadian Society of Civil Engineers, 1888 – 1918, John Lovell & Son, Montreal, Canada. A Canadian-based professional learned engineering society publishing a technical research journal. Contents includes all engineering topics with occasional marine / shipping papers. Changed name and continued as a different title not held by our Special Collection. Refs: CSCE https://csce.ca [accessed 14-02-2017] members only, the Collection is not a member and does not subscribe.

[examples under construction]

The Diesel Engine Users’ Association (DEUA). [papers?]. DEUA, UK, 1915 – 1955. A British trade association or a professional society? Title uncertain as yet but an annual research journal / transactions / proceedings of this professional engineering society’s reports and meetings. Includes some marine engine-building.

Example pages: DEUA, 1931-32, pp.1-39 [only pp.1 scanned]. “Injection, ignition and combustion high-speed heavy-oil engines”. By S. J. Davies & E. Giffen. A detailed technical paper with illustrations and tables, including discussions and author’s replies.
DIESEL ENGINE USERS ASSOCIATION,
307 ABBEY HOUSE, WESTMINSTER, S.W.1.

Injection, Ignition, and Combustion in High-Speed Heavy-Oil Engines.

By S. J. DAVIES, Ph.D., M.Sc. and E. GIFFEN, M.Sc.

Paper read at the Meeting of the Diesel Engine Users Association on Tuesday, 21st March, 1931.

Although there is one successful high-speed heavy-oil engine employing air injection, it will not be disputed that the present rapid development of this type of internal combustion engine would not have taken place if a high-pressure air-compressor were an essential accessory. It is perhaps well to emphasise that from the beginning designers of engines of the pure “compression-ignition” type have striven after airless injection of the fuel, the first successful application in this connexion being that of Sir James McCauchnie, of Vickers, Ltd., in 1910. Subsequent development work by Professor Hawkes and others under the Admiralty brought this method to practical success on submarine engines, and it is interesting to note that as late as 1920 almost all experience with airless injection had been gained in this country.

Engines which are the lineal descendants of these early engines, namely, those in which the fuel is injected directly into a combustion chamber of simple form and, known conversely as the “direct injection” type, constitute an important section

Transactions of the Engineers Association of New South Wales, vol.1[vol.1]=1885/6 – ceased ca.1919?. Continued as The Institution of Engineers, Australia. An Australian regional professional engineering learned society. Published a technical research journal but with very little ship or marine content. Refs: none.

[examples under construction]

[examples under construction but many examples available on the web]

[examples under construction but many examples available on the web]

European Shipbuilding, vol.1 no.1, 1952, pp.56-62 [pp.56-57 parts scanned]. “The super liberty ship ‘Boccadassae’: an interesting operation within ‘ship surgery’ carried out by means of arc-welding”. By Angelo Cassanello. Explains an unusual shiprepair and the technical problems overcome to join together two halves from different ship wrecks to create a new ship.

Example pages: *Fairplay: Shipping Journal*, vol.217 no.4297, 1965 Dec 30 Thursday, pp.[part of Front Cover scanned]. “[Advert for C. F. Sharp & Company, Inc. Sharp Travel Service]”. [By The Editor]. Based in the Philippines. Interesting to note that adverts dominate the front cover of many magazine and journals. Also of note that the magazine is published every week including the Xmas and New Year period – would this happen today? *Fairplay: Shipping Journal*, vol.217 no.4297, 1965 Dec 30 Thursday, pp.5. “Shipbuilding shake-up” [only part of this page]. By The Look-Out Man. A brief editorial article about the impending publication of the UK government’s Geddes Report. Yet another report about the urgent need for a major shake-up and restructuring of the British shipbuilding industry for it to remain commercially competitive in the global market. Particularly changes and improvements in labour relations between the workforce, unions, and management to reduce production costs. Fairfield (Glasgow) Ltd was already in the news having emerged from mergers including the failed company Fairfield Shipbuilding and Engineering Co., Ltd.

Example pages: Feilden’s Magazine, vol.1 no.1, 1899 August, pp.2. “No apology” By Theo/Thos(?) Feilden. Editorial comment on the need for another new magazine.; pp.3-4 “Lest we forget” More editorial comments about the foreign threat to, and decline of, British industry and trade.; pp.5-6. “Facts about our ships and shipbuilding” contains a verbose explanation of world shipbuilding statistics which could be summarised, and understood clearly, in 1 table with 1 supporting paragraph of text.; pp.8-9 “The Americanising our railways” contains a jingoistic article about the ignominy of a British company the *Midland Railway Company* that was ordering American-built rolling stock instead of from a British supplier!
Example pages: Feilden’s Magazine, vol.1 no.1, 1899 August, pp.2. “No apology” By Theo/Thos(?) Feilden. Editorial comment on the need for another new magazine.; pp.3-4 “Lest we forget” More editorial comments about the foreign threat to, and decline of, British industry and trade.; pp.5-6. “Facts about our ships and shipbuilding” contains a verbose explanation of world shipbuilding statistics which could be summarised, and understood clearly, in 1 table with 1 supporting paragraph of text.; pp.8-9 “The Americanising our railways” contains a jingoistic article about the ignominy of a British company the Midland Railway Company that was ordering American-built rolling stock instead of from a British supplier!

Feilden’s Magazine, vol.7 no.37, 1902 August, pp.95-105. [only parts of p95-96 scanned] “Floating graving docks” by S. F. Staples. Discusses at length (without any engineering/mathematical calculations), the pros and cons of a new design of floating dock for lifting and repairing Spanish warships of up to 10,000 tons.
FELDEN’S MAGAZINE

The Americanising of our Railways...

It seems only the other day that we were all startled by the announcement that the Midland Railway Company had decided to import Baldwin locomotives from America for service in connection with its express traffic. This was the most drastic departure from the conventional in British railway administration since the introduction of Pullman cars on this side. Now we find another of our most enterprising and far-seeing railway companies—the Great Eastern—going a step further in the Americanising of our railways by introducing a system of electric automatic signalling and inter-

Original Signed Articles

Floating Graving Docks.

By S. F. Staples.

Some time ago it was found imperative to supply at the port of Havana dry dock accommodation, and that as speedily as possible. As both time and money were important factors in the case, it was impossible to have a stone dock, owing to the time such a dock would take to construct and the unsuitability of the site; so, accordingly, tenders were called for the design and construction of a steel floating dock.

In this connection it may be of interest to follow out their line of reasoning, and incidentally to briefly examine some of the various forms of floating docks at that time existing, noting their separate advantages and disadvantages in connection with the problem we are now dealing with.

In very busy commercial ports, where quay space can be obtained for the necessary staging, a depositing dock is very economical, if the work to be done on
Hansa: Zeitschrift für Schifffahrt, Schiffbau, Hafen. [In German= Hansa: Magazine for Shipping, Shipbuilding, Harbours], 1864 – to date, monthly, Schifaharts Verlag Hansa, Hamburg, Germany. Later continues as Hansa: International Maritime Journal. A German-based trade and industry technical magazine with an international coverage of ships, shipping, and maritime news. Articles in German with some in English language. Refs: Hansa http://www.hansa-online.de [accessed 14-02-2017] subscribers only, the Collection is not a member and does not subscribe.

Example pages: Hansa, vol.86 no.52, 1949 Dec 24, pp1269-1272 [1269 only scanned]. Im blickfeld: Marshallplan-Gegenwertfonds und Seeschifffahrt. This issue is published on very poor quality paper and no colour as Germany recovers from the ravages of war. Headlines are the US-led “Marshall Plan” to pour money in to Germany to aid economic recovery and to try to stabilise a democratic government in the country. Thus minimising poverty, social unrest, and avoiding another descent in chaos and Nazism &/or totalitarianism that had followed WWI.

Hansa, vol.122 no.9, 1985 May, pp969-970 [1969 only scanned]. Schiffsreparatur: Ro/Ro-Schiffe “Eyrafoss” und “Alafoss” bei HDW verlängert. A typical article, about ship lengthening, indicating a flourishing German economy and perhaps vindication of the Marshall Plan 30+ years earlier!
SCHIFFSREPARATUR

Ro/Re-Schiffe „Eyrafoss“ und „Alafoss“ bei HDW verlängert

Die Hawaiianer-Deutsche Werft AG (HDW) in Hamburg hat die Ro-Re-Schiffe „Eyrafoss“ und „Alafoss“ der Green Country Shipping Ltd., Blackpool, um jeweils 11,82 m verlängert.

Im Bild: Der Einsatz der Verlängerungsschiffe bei den HDW muss noch bekannt werden. Das Schiffsmodell zeigt die neue Länge der Schiffe mit dem erhöhten Deck auf.

Die Verlängerung der Schiffe erfolgte im Rahmen der Umbauarbeiten, um den Bedarf an Mehrzweckfrachtschiffen zu decken. Die Ankerhöhe und die Verlängerung der Schiffe wurden so angepasst, dass die Schiffe für den Transport verschiedener Frachtarten geeignet sind.

Die HDW hat im Rahmen der Schiffsreparaturen auch weitere Schiffe verlängert, um den Bedarf an Mehrzweckfrachtschiffen zu decken. Die Umbauarbeiten werden fortgesetzt und weitere Schiffe werden bald der Umbauarbeiten unterzogen.

Quelle: Hawaiianer-Deutsche Werft AG, Hamburg, April 2018.

Example Pages: [under construction]

Example Pages: Hansa: Shipbuilding – Marine Engineering. And Shipbuilding Herald, vol.5 no.12 Feb 1957, pp.31- [only part of p31 scanned]. Scanning the horizon. By Mercator.
Van Rees
Standard Series of
Dismountable
Cutter Profile
Dredgers

N.V. Scheepstobouw H N.V. van Rees, Slikedrecht, has
developed a standard type of dismountable cutter profile
dredger which has been well-received, in Holland as well
as abroad. This shows that the dredger fulfills present-day
requirements. Already 18 of these dredgers have been
delivered, while another two are still under construction
for well-known dredging contractors.

In the meantime the dredger is still being improved and
adapted to modern technical developments. The dredger has the following dimensions:

- Length: 35.00 m.
- Breadth: 16.00 m.
- Depth: 2.50 m.

The standard series consists of seven sections with dimensions and weights
tuned to the requirements of road, rail and water-borne
transport. The heaviest section, which measures 18 x 3.40 x
2.50 metres, has a maximum weight of 73 tons. As all deck
machinery and fittings can be removed to a height of
236 mm. above deck level, the height of profile is such that
the craft can pass under low bridges, while the use of
stabilizing pontoons enables it to pass under bridges or
through locks with a maximum width of 6 metres.

By splitting the ladder and by the application of two 3-drum
winches as well as a separate hoisting winch with adjustable
transmission, the dredger can be used as:

a. Cutter dredger with a maximum cutter depth of 16 m.
n with the use of different cutter heads enabling an optimum
production under different operating conditions.

b. Profile dredger with a maximum section depth of 20 m.

The suction dredger can be mounted and dismantled while
afloat by means of the stabilizing pontoons. The latter
can easily be converted into a floating crane with a hoisting
capacity of 15 tons and at the same time is suitable for the
carriage of fuel and potable water. The high degree of
stability, sufficient freeboard and great pull of the winches
make the dredger entirely suitable for use in open water
and in currents. Optimum production is obtained under

This specialist magazine was launched in response to the rapid increase in ground-effect vehicles which had been pioneered in the UK. Changes in magazine title reflected how the market had expanded to include many different types of high-speed craft including ground-effect craft, hovercraft, hydrofoils, catamarans, and eventually to be dominated by the fast ferries which is now the main civil use of high-speed surface craft.

Example pages: Hovering Craft and Hydrofoil, vol.1 no.1, 1961 Oct, pp.1. “[Front cover showing ‘Sirena’]”; Pp.3. “First commercial GEM. Setting the pace”. Outlines the rapid rise in commercial high-speed hydrofoil craft but that as yet no ground-effect-machines (GEM) are in commercial operation.

Hovering Craft and Hydrofoil, vol.1 no.1, 1961 Oct, pp.26-27 [only part scanned]. “Design and operating problems of commercial hydrofoil boats”. By H. von Schertel. Briefly explains the development of commercial hydrofoil craft and the rapidly increasing demand for fast passenger and cargo craft due to their speed and economic advantages compared with other marine craft and aircraft over short distances. Shows the ‘Sirena’ as an example.

High-Speed Surface Craft, vol.21 no.12, 1982 Dec, pp.1 “[Front cover]” including photograph of British Hovercraft Corporation AP.1-88 ; pp.3 “[Contents]”; pp.4-10 [only pp.7 scanned] “Genoa 1982: 22nd Salone Nautico: A brief
report on the international motor boat show” describing boats at the show including the 12m craft from Versilcraft shipyard of Viareggio; pp.13 “Stirling Moss makes flying visit” one paragraph news snippet about the famous racing driver who was sailing the Tiger, the latest hovercraft from Air Vehicles Ltd at Cowes.

VICKERS HOVERCRAFT PROGRAMME ANNOUNCED

The basic design of the first generation of these craft comprises a primary element in the form of a stiff platform, taking the distributed pressure of the air cushion on the four fins 130 mm wide, 600 mm long, and 30 mm thick. The F401 engine and distribution system for the peripheral jet engine, along with the system for the two air compressor units for passenger cars and cargo boxes, was designed to provide lift to the craft in hover, pitch and roll, and to maintain the effects of side loads and yawing movements. Model tests have been made, over water, grass and in the wind tunnel, to determine the stability and response of the hovercraft. To follow up these tests a research craft, VH5, has been built with four main fins only for the hovercraft and a long test ride was undertaken at sea. In 1960, it attained a speed of 9,580 knots and an operating height of 4,500 feet. It has been operated continuously since with various modifications, including engine changes, for passenger, cargo, and military operations at various oil and gas rigs. The development of the hovercrafts has been carried out at the Vickers-Armstrong (South Moreton) Works, and various series and models have been developed. Various theories and models have been tested and a number of hovercrafts have been built to demonstrate the technical feasibility of the craft. The first prototype is now in operation, and the craft has been built sufficiently small to be manoeuvred against the wind.
DESIGN AND OPERATING PROBLEMS OF COMMERCIAL HYDROFOIL BOATS

by Baron H. von Scheretel
(Supramar A.G., Lucerne)

It has taken a comparatively long period of time (some 50 years) to develop the hydrofoil boat into a type of craft now commercially applied as a "new" means of transportation. By comparison, development or airplanes, roughly starting at the same time as that of hydrofoil boats, proceeded at a very much faster pace. Indeed, the airplane has now reached a very high degree of perfection, while interest in and development of hydrofoil craft have not been steady over the years. One reason for slow progress in the art of "flying" in water may have rested in a number of hydrodynamic problems, not encountered in air. Even after solving such problems, a number of well-performing experimental boats were simply disregarded, however. It appears that the new means of waterborne transportation was considered with suspicion, and practical application was prevented by the tendency of ship owners and operators to stick to the traditional, conventional and conservative types of marine vessel.

Speed and Economy

Foil-supported craft can be designed for comparatively high speeds, and they can operate at such speeds with reasonable efficiency. This is to say that at higher Froude numbers (or speed-size ratios) hydrofoil systems are known to function at drag over weight ratios below those of conventional motorboats (either of the planing or of the non-planing type). In conclusion, hydrofoil boats must be expected to be comparatively economical as far as size of machinery and fuel consumption is concerned in certain size and speed ranges where other types of water-borne craft cannot very well operate effectively.

In Figure 1, the specific power requirements of various water land-borne vehicles (railroads) was already far advanced. Since then, aircraft have been perfected to such a degree that today more passengers cross the Atlantic by air than by ship. This indicates that most people prefer speed (saving time) rather than relaxation while travelling. Such preference of speed is particularly evident in short-distance trips across water, wherever means of transportation speedier than the conventional water-borne type are made available. Examples for such situations might be lakes (or Long Island Sound) or boat lines on rivers (or along the coast) or, last but not least, ferry services such as to and between islands.

After the arrival (availability) of reliable hydrofoil craft, another change seems to develop within the short-distance sector of water-borne transportation. Because of their high cruising speed, up to three times as high as that of previously existing conventional boat lines, foil-supported craft appear quite capable of competitive rates even with one land-borne vehicle.

(a unit weight of 111 lb/h.p., including equipment for a range of 300 km). Taking also into account some material necessary to strengthen the planing bottom, the dead weight of this craft is then expected to be at least 3 tons higher than that of the hydrofoil boat. The equivalent loss of passengers (on a weight basis) is in the order of 37. The number of paying passengers is, in other words, reduced to ¼, half, while the expenses for machinery and fuel are roughly doubled. Experience in commercial passenger transportation proves that, applying the foil-supported type of carrier, a yearly net profit can be obtained in the order of some 40 per cent of capital invested. On the other hand, using the planing type of boat, no profit can be expected at all under the conditions of operations as stated above.

(to be continued)
... and Kawasaki Heavy Industries

Kawasaki Heavy Industries has released details of the first Jeffoil 929-117 hydrofoils to be built at its Kobe yard since the company signed a license agreement with Boeing Marine Systems. The first of these is scheduled to be delivered to Sado Kisen Kaisha in March. Fitted out for 266 passengers, it will join the 929-100 and two 929-115s already operated between Niigata and Ryoju on Sado island.

A 265-seat version will then be delivered to Kagoshima Shosen in June for a route linking Kagoshima, Nishinoomote on Tanegashima Island and Miyazaka on Yakushima Island. The other two craft will be both be based in Nagasaki, Japan. Ocean Cruise Line is to introduce one, configured for only 180 passengers, in September on an international service to Cheju in South Korea. The fourth Jeffoil off the Japanese production line, a 282-seat variant, will then be delivered to Kyushu Shosen Kaisha next March for a route to Fukuoka and Nara in the Goto Islands.

Korea Tacoma Marine Industries

Korea Tacoma Marine Industries features the distinctive figurehead of Dong Bu Express

1988 Deliveries and orders

Yet another record year for fast ferry deliveries and orders. With 70 vessels launched in 1988, 50% more than during the previous year, and outstanding orders accounting for another 75, approximately the same number as at the end of 1986, there is little sign of a levelling off of activity in the industry. Some yards could still ship craft in the final quarter of 1989 but this situation is unlikely to last very much longer. Deliveries for the second quarter of 1990 are already being confirmed.

Not does the following tell the complete story. The number of craft built last year was higher than indicated, at least five catamarans were launched at two Australian yards and a monohull in Japan but because no details could be confirmed they have not been included. Similarly, several outstanding orders have yet to be officially announced.

Catamarans continue to dominate the order books while surface effect ships and wave piercing catamarans are beginning to make an impact. As usual, the figures do not include hydrofoil production in the USSR, only those vessels known to have entered service overseas.

Ferries carrying up to 99 passengers were again the most popular size during 1988 and 200-349 seats continued to be the most popular range. In the current year, it seems likely that the 200-249 seat size will dominate production. There is certainly a trend by operators towards larger craft. Or even very large craft, four passenger/car ferries are due to be delivered in 1990. As in other

1988 Deliveries and orders according to craft type and size

<table>
<thead>
<tr>
<th>Deliveries</th>
<th>Outstanding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catamarans</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>Hovercraft</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hydrofoils</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Monohulls</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>SWATH/FDC</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Surface effect ships</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Wave piercing catamarans</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>75</td>
</tr>
</tbody>
</table>
DELIVERIES AND ORDERS

<table>
<thead>
<tr>
<th>Vessel name</th>
<th>Yard No</th>
<th>Vessel type</th>
<th>Delivery</th>
<th>Operator</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fai Engineers & Shiprepairers</td>
<td>129</td>
<td>Incat 21m catamaran</td>
<td>December</td>
<td>Shenzhen Shipping Company</td>
<td>PRC</td>
</tr>
<tr>
<td>Ling Nan Chua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen Marine</td>
<td>??</td>
<td>Drake 30.5m catamaran</td>
<td>June</td>
<td>Alaska Catamaran</td>
<td>United States</td>
</tr>
<tr>
<td>Aluminium Shipbuilders</td>
<td>10</td>
<td>Incat 17m catamaran</td>
<td>April</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Barclays Bank</td>
<td>11</td>
<td>Incat 17m catamaran</td>
<td>May</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>London Docklands</td>
<td>12</td>
<td>Incat 17m catamaran</td>
<td>May</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Daily Telegraph</td>
<td>13</td>
<td>Incat 17m catamaran</td>
<td>July</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Chelsea Harbour</td>
<td>14</td>
<td>Incat 17m catamaran</td>
<td>August</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Debenham Teeswater</td>
<td>15</td>
<td>Incat 17m catamaran</td>
<td>September</td>
<td>Thames Line</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>and Comstocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harbour Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basilirising</td>
<td>86</td>
<td>Otto I. Schenck Jr</td>
<td>November</td>
<td></td>
<td>Korea</td>
</tr>
</tbody>
</table>

To see the history of more titles please visit the Collection’s website for Search Collection then Periodicals Histories.

How to contact the Collection:

The Marine Technology Special Collection
Newcastle University
Room 3.32
Armstrong Building
Queen Victoria Road
Newcastle upon Tyne
NE1 7RU
United Kingdom

Email: marine.archive@newcastle.ac.uk

Telephone: +44 (0) 191 20 83522
or 86718 (Enquiries)

URL: www.ncl.ac.uk/marine/facilities/specialcollection/