Postgraduate

Modules

Modules

CSC8635 : Machine Learning with Project

Semesters
Semester 1 Credit Value: 10
ECTS Credits: 5.0

Aims

Machine Learning is concerned with the design of algorithms for recognising patterns in data. The field of pattern recognition represents the basis for a wide range of applications for automatic data analysis, such as computer vision, automatic speech recognition, or activity recognition – all based on sensor based observations of humans in their environment. The growth of “big data” means that such analysis techniques are now widely used for mining information from large amounts of data as they are collected in contemporary computing infrastructures, including clouds.

Conceptually, Pattern Recognition aims for the detection of instances of relevant classes that are typically associated with reappearing patterns in data streams. Examples of which are the automatic detection of faces in video streams, automatic transcription of spoken language, analysis of human movements, trend prediction in stock market data, intrusion detection in computer systems, or the analysis of social networks. The task is to find, model (or "learn") and classify those patterns, and to distinguish relevant from irrelevant events.
Machine Learning techniques represent the algorithmic foundation for such tasks, and involve both statistical modelling techniques and probabilistic reasoning approaches.

This module aims to provide a foundation in the field of Pattern Recognition and an expertise in Machine Learning techniques as a toolkit for automatically analysing (large amounts of) data – be it static data, such as images, or dynamic data, such as time series and sensor data.

Outline Of Syllabus

Introduction of Machine Learning: Supervised Learning, Unsupervised Learning, Data Representation, Overfitting
- Basics: Bayesian Theorem, Gaussian Distribution, Gaussian Mixture Models, Maximum Likelihood Estimation, Regularisation, Gradient Descent.
- Traditional Supervised Learning Models: Linear Regression, Logistic Regression (LR), Naive Bayes Classifier (NB), Decision Tree (DT), Random Forest (RF), Support Vector Machines(SVM), kernel SVM, K-nearest Neighbours Classifier (KNN).
- Traditional Clustering Methods: K-Means, Expectation Maximisation (EM)
- Deep Learning: Multilayer Perceptron(MLP), Convolutional Neural Network (CNN), Recurrent Neural Network(RNN), Long Short Term Memory (LSTM), ConvLSTM. Autoencoder (AE)
- Feature Extraction Methods: Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA)

Students taking this module in the context of the MSc in Cyber Security must undertake a project specifically on Cyber Security aspects, with the approval of the relevant DPD

Teaching Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Assessment Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Reading Lists

Timetable