Postgraduate

Modules

Modules

MEC8051 : Biomedical Additive Manufacture and Biofabrication

Semesters
Semester 1 Credit Value: 20
ECTS Credits: 10.0

Aims

•       To develop knowledge and understanding of the commercial use of additive manufacture and 3D printing for biomedical applications.
•       To learn how to use biomedical CAD/CAM software to design person specific medical devices.
•       To develop knowledge and understanding of biomaterials, and specifically how to select and evaluate biomaterials for a specific application.
•       To develop knowledge and understanding of bioprinting and biofabrication, and specifically the techniques by which cells and other biological materials may be processed.
•       To develop knowledge of medical devices, therapeutic products and their regulation.
•       To develop knowledge and understanding of the additive manufacture processes and process chains which can be used in biomedical applications, including those for biofabrication.

Outline Of Syllabus

The module will be delivered in five main sections:

1.       Introduction to Additive Manufacture for Biomedical Applications. Introduction to the module, review of current commercial applications (medical models; orthotics and prosthetics; dental aligners; in the ear hearing aids; surgical guides; dental crowns and bridges; craniofacial plates) and potential future applications (tissue engineering and regenerative medicine).
2.       Biomedical CAD/CAM. Training in the use of a commercial biomedical CAD/CAM software package. Understanding of the different types of model used in biomedical CAD/CAM, and of the capabilities of the different types of imaging technologies.
3.       Biomaterials. Introduction to biomaterials: definitions, examples, properties and requirements. Applications of biomaterials in medicine (bone scaffolds, hip implants, craniofacial fixation systems).. Sterilisation and surface modification of biomaterials.
4.       Medical Devices, Therapeutic Products and Regulatory Processes. Classifications of device and therapeutic product. Tissue engineering strategies. Medical device and therapeutic product regulation.
5.       Biofabrication and Bioprinting. Techniques for systematic processing of biological materials. Cell/material co-processing. Potential applications.

Students will also undertake two significant pieces of coursework: a biomedical CAD/CAM case study, and a case study in medical product development which exploits the advantages of additive manufacture, including the manufacture of a prototype.

Teaching Methods

Teaching Activities
Category Activity Number Length Student Hours Comment
Guided Independent StudyAssessment preparation and completion254:00100:00Coursework
Scheduled Learning And Teaching ActivitiesLecture122:0024:00N/A
Guided Independent StudyAssessment preparation and completion104:0040:00Staff time for observing presentations
Guided Independent StudyDirected research and reading102:0020:00Coursework
Scheduled Learning And Teaching ActivitiesPractical42:008:00Biomedical CAD/CAM
Guided Independent StudySkills practice42:008:00Biomedical CAD/CAM
Total200:00
Teaching Rationale And Relationship

The lectures are intended to give the students the foundations with which to pursue their coursework exercises, in which they will apply what they have learnt to specific case studies and product development exercises. The practical sessions will introduce the students to the biomedical CAD/CAM software, so that they can use these skills in their coursework exercises.

Assessment Methods

The format of resits will be determined by the Board of Examiners

Other Assessment
Description Semester When Set Percentage Comment
Case study1M40Report and assessment of CAD models - max 2,000 words
Design/Creative proj1M10Presentation on Product Development Project (~15 mins). Students present initial ideas for assessment and feedback.
Case study1M50Product Development Exercise - Report on a case study in medical product development - max 2,500 words
Assessment Rationale And Relationship

The two pieces of coursework will allow the students to show that they have understood all of the elements required in order to bring a biomedical product using AM to market, and that they have the technical skills in terms of CAD/CAM process to design and manufacture parts using relevant techniques. Coursework is preferred as it provides a mechanism for the students to show that they are able to integrate the separate elements together to develop a specific product design.

Reading Lists

Timetable