Undergraduate

modules

Modules

MAR2021 : Marine Structures I

Semesters
Semester 1 Credit Value: 10
Semester 2 Credit Value: 10
ECTS Credits: 10.0

Aims

To develop knowledge and understanding of:
A1. The global response of ship as a beam in still water and poised on a wave
A2. The resulting forces, moments and stresses
A3. The calculation and development of midship section
A4. The statistical nature of hull bending in waves
A5. Response of slender elements in compression
A6. Ship structural components and materials in structural design and analysis.
A7. To increase awareness of structural and related principles and concepts
A8. To develop the knowledge and skills to undertake ship structural design and analysis

The module provides an awareness of structural principles and their application to marine related problems. Topics include: static equilibrium; beams, trusses; forces on a ship; longitudinal ship strength in still water and wave, shear force, bending moment and related stresses; statistical approach to wave bending; shear deflection, stress and lag; materials of construction; elastic strut buckling; connections.

Outline Of Syllabus

Introduction to forces acting on a ship at sea; a quasi static approaches to longitudinal strength; determining equilibrium; calculation of weight, buoyancy, shear force and bending moment; determining design bending moment and shear force; classification society requirements; calculation of bending stress distribution; calculation of shear tress distribution; the influence of shear strain and stress on longitudinal stress (shear lag); calculation of hull deflection; introduction of shear strain and stress on longitudinal stress (shear lag); calculation of hull deflection; introduction to transverse and local strength; buckling of struts and fundamental assumptions; Euler and Rankine-Gordon methods; strain gauge recording of stress of a ship at sea; statistical interpretation of the stress record; prediction probability of stress level exceedance; different steel types used in the marine industry; the evaluation of trusses by the method of nodes and method of sections.

Structural configurations; elastic beam theory; indeterminate beams; stiffened panels; transverse and local strength; continuous beams; composite materials; composite construction; 2-D stress and strain; principle stresses/strain; strain gauge rosettes; transverse and local strength; temperature effects; finite elements; introduction to ship vibration; propeller hull interaction forces; machinery excitation; estimation of natural frequencies and amplitudes of hull vibration; design considerations.

Teaching Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Assessment Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Reading Lists

Timetable