The Binomial Series

16.3

Introduction

In this Section we examine an important example of an infinite series, the binomial series:

$$
1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots
$$

We show that this series is only convergent if $|x|<1$ and that in this case the series sums to the value $(1+x)^{p}$. As a special case of the binomial series we consider the situation when p is a positive integer n. In this case the infinite series reduces to a finite series and we obtain, by replacing x with $\frac{b}{a}$, the binomial theorem:

$$
(b+a)^{n}=b^{n}+n b^{n-1} a+\frac{n(n-1)}{2!} b^{n-2} a^{2}+\cdots+a^{n} .
$$

Finally, we use the binomial series to obtain various polynomial expressions for $(1+x)^{p}$ when x is 'small'.

- understand the factorial notation

Prerequisites

Before starting this Section you should

- have knowledge of the ratio test for convergence of infinite series.
- understand the use of inequalities
- recognise and use the binomial series

Learning Outcomes

On completion you should be able to ...

- state and use the binomial theorem
- use the binomial series to obtain numerical approximations

1. The binomial series

A very important infinite series which occurs often in applications and in algebra has the form:

$$
1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots
$$

in which p is a given number and x is a variable. By using the ratio test it can be shown that this series converges, irrespective of the value of p, as long as $|x|<1$. In fact, as we shall see in Section 16.5 the given series converges to the value $(1+x)^{p}$ as long as $|x|<1$.

Key Point 9

The Binomial Series

$$
(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots \quad|x|<1
$$

The binomial theorem can be obtained directly from the binomial series if p is chosen to be a positive integer (here we need not demand that $|x|<1$ as the series is now finite and so is always convergent irrespective of the value of x). For example, with $p=2$ we obtain

$$
\begin{aligned}
(1+x)^{2} & =1+2 x+\frac{2(1)}{2} x^{2}+0+0+\cdots \\
& =1+2 x+x^{2} \text { as is well known. }
\end{aligned}
$$

With $p=3$ we get

$$
\begin{aligned}
(1+x)^{3} & =1+3 x+\frac{3(2)}{2} x^{2}+\frac{3(2)(1)}{3!} x^{3}+0+0+\cdots \\
& =1+3 x+3 x^{2}+x^{3}
\end{aligned}
$$

Generally if $p=n$ (a positive integer) then

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots+x^{n}
$$

which is a form of the binomial theorem. If x is replaced by $\frac{b}{a}$ then

$$
\left(1+\frac{b}{a}\right)^{n}=1+n\left(\frac{b}{a}\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^{2}+\cdots+\left(\frac{b}{a}\right)^{n}
$$

Now multiplying both sides by a^{n} we have the following Key Point:

Key Point 10

The Binomial Theorem

If n is a positive integer then the expansion of $(a+b)$ raised to the power n is given by:

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\cdots+b^{n}
$$

This is known as the binomial theorem.
(a) $(1+x)^{7}$
(b) $(a+b)^{4}$
(a) Here $n=7$:

Your solution

$$
(1+x)^{7}=
$$

Answer

$(1+x)^{7}=1+7 x+21 x^{2}+35 x^{3}+35 x^{4}+21 x^{5}+7 x^{6}+x^{7}$
(b) Here $n=4$:

Your solution

$$
(a+b)^{4}=
$$

Answer

$$
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
$$

Task

Given that x is so small that powers of x^{3} and above may be ignored in comparison to lower order terms, find a quadratic approximation of $(1-x)^{\frac{1}{2}}$ and check for accuracy your approximation for $x=0.1$.

First expand $(1-x)^{\frac{1}{2}}$ using the binomial series with $p=\frac{1}{2}$ and with x replaced by $(-x)$:

Your solution

$(1-x)^{\frac{1}{2}}=$

Answer
$(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2} x^{2}-\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{6} x^{3}+\cdots$
Now obtain the quadratic approximation:

Your solution

$$
(1-x)^{\frac{1}{2}} \simeq
$$

Answer

$$
(1-x)^{\frac{1}{2}} \simeq 1-\frac{1}{2} x-\frac{1}{8} x^{2}
$$

Now check on the validity of the approximation by choosing $x=0.1$:

Your solution

Answer

On the left-hand side we have

$$
(0.9)^{\frac{1}{2}}=0.94868 \text { to } 5 \text { d.p. } \quad \text { obtained by calculator }
$$

whereas, using the quadratic expansion:

$$
(0.9)^{\frac{1}{2}} \approx 1-\frac{1}{2}(0.1)-\frac{1}{8}(0.1)^{2}=1-0.05-(0.00125)=0.94875
$$

so the error is only 0.00007 .

What we have done in this last Task is to replace (or approximate) the function $(1-x)^{\frac{1}{2}}$ by the simpler (polynomial) function $1-\frac{1}{2} x-\frac{1}{8} x^{2}$ which is reasonable provided x is very small. This approximation is well illustrated geometrically by drawing the curves $y=(1-x)^{\frac{1}{2}}$ and $y=1-\frac{1}{2} x-\frac{1}{8} x^{2}$. The two curves coincide when x is 'small'. See Figure 2:

Figure 2

Obtain a cubic approximation of $\frac{1}{(2+x)}$. Check your approximation for accuracy using appropriate values of x.

First write the term $\frac{1}{(2+x)}$ in a form suitable for the binomial series (refer to Key Point 9):

Your solution

$$
\frac{1}{(2+x)}=
$$

Answer

$$
\frac{1}{2+x}=\frac{1}{2\left(1+\frac{x}{2}\right)}=\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}
$$

Now expand using the binomial series with $p=-1$ and $\frac{x}{2}$ instead of x, to include terms up to x^{3} :

Your solution

$$
\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}=
$$

Answer

$$
\begin{aligned}
\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1} & =\frac{1}{2}\left\{1+(-1) \frac{x}{2}+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^{3}\right\} \\
& =\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}
\end{aligned}
$$

State the range of x for which the binomial series of $\left(1+\frac{x}{2}\right)^{-1}$ is valid:

Your solution

The series is valid if

Answer

valid as long as $\left|\frac{x}{2}\right|<1$ i.e. $|x|<2$ or $-2<x<2$

Choose $x=0.1$ to check the accuracy of your approximation:

Your solution

$$
\begin{aligned}
& \frac{1}{2}\left(1+\frac{0.1}{2}\right)^{-1}= \\
& \frac{1}{2}-\frac{0.1}{4}+\frac{0.01}{8}-\frac{0.001}{16}=
\end{aligned}
$$

Answer

$$
\begin{aligned}
& \frac{1}{2}\left(1+\frac{0.1}{2}\right)^{-1}=0.47619 \text { to } 5 \text { d.p. } \\
& \frac{1}{2}-\frac{0.1}{4}+\frac{0.01}{8}-\frac{0.001}{16}=0.4761875
\end{aligned}
$$

Figure 3 below illustrates the close correspondence (when x is 'small') between the curves $y=$ $\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}$ and $y=\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}$.

Figure 3

Exercises

1. Determine the expansion of each of the following
(a) $(a+b)^{3}$,
(b) $(1-x)^{5}$,
(c) $\left(1+x^{2}\right)^{-1}$,
(d) $(1-x)^{1 / 3}$.
2. Obtain a cubic approximation (valid if x is small) of the function $(1+2 x)^{3 / 2}$.

Answers

1. (a) $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
(b) $(1-x)^{5}=1-5 x+10 x^{2}-10 x^{3}+5 x^{4}-x^{5}$
(c) $\left(1+x^{2}\right)^{-1}=1-x^{2}+x^{4}-x^{6}+\cdots$
(d) $\quad(1-x)^{1 / 3}=1-\frac{1}{3} x-\frac{1}{9} x^{2}-\frac{5}{81} x^{3}+\cdots$
2. $(1+2 x)^{3 / 2}=1+3 x+\frac{3}{2} x^{2}-\frac{1}{2} x^{3}+\cdots$.
