The Chain Rule

Introduction

In this Section we will see how to obtain the derivative of a composite function (often referred to as a 'function of a function'). To do this we use the chain rule. This rule can be used to obtain the derivatives of functions such as $e^{x^{2}+3 x}$ (the exponential function of a polynomial); $\sin (\ln x)$ (the sine function of the natural logarithm function); $\sqrt{x^{3}+4}$ (the square root function of a polynomial).

Before starting this Section you should ...

Learning Outcomes

On completion you should be able to ...

- be able to differentiate standard functions
- be able to use the product and quotient rule for finding derivatives
- differentiate a function of a function using the chain rule
- differentiate a power function

1. The meaning of a function of a function

When we use a function like $\sin 2 x$ or $e^{\ln x}$ or $\sqrt{x^{2}+1}$ we are in fact dealing with a composite function or function of a function.
$\sin 2 x$ is the sine function of $2 x$. This is, in fact, how we 'read' it:
$\sin 2 x$ is read 'sine of $2 x$ '
Similarly $e^{\ln x}$ is the exponential function of the logarithm of x :
$e^{\ln x}$ is read ' e to the power of $\ln x$ '
Finally $\sqrt{x^{2}+1}$ is also a composite function. It is the square root function of the polynomial $x^{2}+1$:
$\sqrt{x^{2}+1}$ is read as the 'square root of $\left(x^{2}+1\right)$ '
When we talk about a function of a function in a general setting we will use the notation $f(g(x))$ where both f and g are functions.

Example 11

Specify the functions f, g for the composite functions
(a) $\sin 2 x$
(b) $\sqrt{x^{2}+1}$
(c) $e^{\ln x}$

Solution

(a) Here f is the sine function and g is the polynomial $2 x$. We often write:

$$
f(g)=\sin g \quad \text { and } \quad g(x)=2 x
$$

(b) Here $f(g)=\sqrt{g}$ and $g(x)=x^{2}+1$
(c) Here $f(g)=e^{g}$ and $g(x)=\ln x$

In each case the original function of x is obtained when $g(x)$ is substituted into $f(g)$.

Specify the functions f, g for the composite functions
(a) $\cos \left(3 x^{2}-1\right)$
(b) $\sinh \left(e^{x}\right)$
(c) $\left(x^{2}+3 x-1\right)^{1 / 3}$

Your solution

(a)

Answer

$f(g)=\cos g \quad g(x)=3 x^{2}-1$

Your solution

(b)

Answer

$f(g)=\sinh g \quad g(x)=e^{x}$

Your solution

(c)

Answer

$$
f(g)=g^{1 / 3} \quad g(x)=x^{2}+3 x-1
$$

2. The derivative of a function of a function

To differentiate a function of a function we use the following Key Point:

Key Point 11

The Chain Rule

If $y=f(g(x))$, that is, a function of a function, then

$$
\frac{d y}{d x}=\frac{d f}{d g} \times \frac{d g}{d x}
$$

This is called the chain rule.

Example 12

Find the derivatives of the following composite functions using the chain rule and check the result using other methods
(a) $\left(2 x^{2}-1\right)^{2}$
(b) $\ln e^{x}$

Solution

(a) Here $y=f(g(x))$ where $f(g)=g^{2}$ and $g(x)=2 x^{2}-1$. Thus

$$
\frac{d f}{d g}=2 g \quad \text { and } \quad \frac{d g}{d x}=4 x \quad \therefore \quad \frac{d y}{d x}=2 g .(4 x)=2\left(2 x^{2}-1\right)(4 x)=8 x\left(2 x^{2}-1\right)
$$

This result is easily checked by using the rule for differentiating products: $y=\left(2 x^{2}-1\right)\left(2 x^{2}-1\right) \quad$ so $\quad \frac{d y}{d x}=4 x\left(2 x^{2}-1\right)+\left(2 x^{2}-1\right)(4 x)=8 x\left(2 x^{2}-1\right) \quad$ as obtained above.
(b) Here $y=f(g(x))$ where $f(g)=\ln g$ and $g(x)=e^{x}$. Thus

$$
\frac{d f}{d g}=\frac{1}{g} \quad \text { and } \quad \frac{d g}{d x}=e^{x} \quad \therefore \quad \frac{d y}{d x}=\frac{1}{g} \cdot e^{x}=\frac{1}{e^{x}} \cdot e^{x}=1
$$

This is easily checked since, of course,
$y=\ln e^{x}=x$ and so, obviously $\frac{d y}{d x}=1$ as obtained above.

Task

Obtain the derivatives of the following functions
(a) $\left(2 x^{2}-5 x+3\right)^{9}$
(b) $\sin (\cos x)$
(c) $\left(\frac{2 x+1}{2 x-1}\right)^{3}$
(a) Specify f and g for the first function:

Your solution

$f(g)=$

$$
g(x)=
$$

Answer

$$
f(g)=g^{9} \quad g(x)=2 x^{2}-5 x+3
$$

Now obtain the derivative using the chain rule:

Your solution

Answer

$9\left(2 x^{2}-5 x+3\right)^{8}(4 x-5)$. Can you see how to obtain the derivative without going through the intermediate stage of specifying f, g ?
(b) Specify f and g for the second function:

Your solution

Answer

$f(g)=\sin g \quad g(x)=\cos x$
Now use the chain rule to obtain the derivative:

Your solution

Answer

$-[\cos (\cos x)] \sin x$
(c) Apply the chain rule to the third function:

Your solution

Answer

$$
-\frac{12(2 x+1)^{2}}{(2 x-1)^{4}}
$$

3. Power functions

An example of a function of a function which often occurs is the so-called power function $[g(x)]^{k}$ where k is any rational number. This is an example of a function of a function in which

$$
f(g)=g^{k}
$$

Thus, using the chain rule: if $y=[g(x)]^{k}$ then $\frac{d y}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}=k g^{k-1} \frac{d g}{d x}$.
For example, if $y=(\sin x+\cos x)^{1 / 3}$ then $\frac{d y}{d x}=\frac{1}{3}(\sin x+\cos x)^{-2 / 3}(\cos x-\sin x)$.

Task
(1)

Find the derivatives of the following power functions
(a) $y=\sin ^{3} x$
(b) $y=\left(x^{2}+1\right)^{1 / 2}$
(c) $y=\left(e^{3 x}\right)^{7}$
(a) Note that $\sin ^{3} x$ is the conventional way of writing $(\sin x)^{3}$. Now find its derivative:

Your solution

Answer

$\frac{d y}{d x}=3(\sin x)^{2} \cos x$ which we would normally write as $3 \sin ^{2} x \cos x$
(b) Use the function of a function approach again:

Your solution

Answer

$$
\frac{d y}{d x}=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} 2 x=\frac{x}{\sqrt{x^{2}+1}}
$$

(c) Use the function of a function approach first, and then look for a quicker way in this case:

Your solution

Answer

$\frac{d y}{d x}=7\left(e^{3 x}\right)^{6}\left(3 e^{3 x}\right)=21\left(e^{3 x}\right)^{7}=21 e^{21 x}$
Note that $\left(e^{3 x}\right)^{7}=e^{21 x} \quad \therefore \quad \frac{d y}{d x}=21 e^{21 x}$ directly - a much quicker way.

Exercise

Obtain the derivatives of the following functions:
(a) $\left(\frac{2 x+1}{3 x-1}\right)^{4}$
(b) $\tan \left(3 x^{2}+2 x\right)$
(c) $\sin ^{2}\left(3 x^{2}-1\right)$

Answer

(a) $-\frac{20(2 x+1)^{3}}{(3 x-1)^{5}}$
(b) $2(3 x+1) \sec ^{2}\left(3 x^{2}+2 x\right)$
(c) $6 x \sin \left(6 x^{2}-2\right)($ remember $\sin 2 x \equiv 2 \sin x \cos x)$

