The Chain Rule

In this Section we will see how to obtain the derivative of a composite function (often referred to as a 'function of a function'). To do this we use the **chain rule**. This rule can be used to obtain the derivatives of functions such as e^{x^2+3x} (the exponential function of a polynomial); $\sin(\ln x)$ (the sine function of the natural logarithm function); $\sqrt{x^3+4}$ (the square root function of a polynomial).

	• be able to differentiate standard functions	
Before starting this Section you should	• be able to use the product and quotient rule for finding derivatives	
Learning Outcomes	 differentiate a function of a function using the chain rule 	
On completion you should be able to		

1. The meaning of a function of a function

When we use a function like $\sin 2x$ or $e^{\ln x}$ or $\sqrt{x^2 + 1}$ we are in fact dealing with a composite function or function of a function.

 $\sin 2x$ is the sine function of 2x. This is, in fact, how we 'read' it:

 $\sin 2x$ is read 'sine of 2x'

Similarly $e^{\ln x}$ is the exponential function of the logarithm of x:

 $e^{\ln x}$ is read 'e to the power of $\ln x$ '

Finally $\sqrt{x^2+1}$ is also a composite function. It is the square root function of the polynomial x^2+1 :

 $\sqrt{x^2+1}$ is read as the 'square root of $(x^2+1){\rm '}$

When we talk about a function of a function in a general setting we will use the notation f(g(x)) where both f and g are functions.

Example 11 Specify the functions f, g for the composite functions (a) $\sin 2x$ (b) $\sqrt{x^2 + 1}$ (c) $e^{\ln x}$

Solution

(a) Here f is the sine function and g is the polynomial 2x. We often write:

 $f(g) = \sin g$ and g(x) = 2x

- (b) Here $f(g) = \sqrt{g}$ and $g(x) = x^2 + 1$
- (c) Here $f(g) = e^g$ and $g(x) = \ln x$

In each case the original function of x is obtained when g(x) is substituted into f(g).

Specify the functions f, g for the composite functions (a) $\cos(3x^2 - 1)$ (b) $\sinh(e^x)$ (c) $(x^2 + 3x - 1)^{1/3}$

Your solution
(a)
Answer
$f(g) = \cos g \qquad g(x) = 3x^2 - 1$
Your solution
(b)
Answer
$f(g) = \sinh g$ $g(x) = e^x$
Your solution
(c)
Answer
$f(g) = g^{1/3}$ $g(x) = x^2 + 3x - 1$

2. The derivative of a function of a function

To differentiate a function of a function we use the following Key Point:

Example 12

Find the derivatives of the following composite functions using the chain rule and check the result using other methods

(a)
$$(2x^2 - 1)^2$$
 (b) $\ln e^x$

Solution
(a) Here
$$y = f(g(x))$$
 where $f(g) = g^2$ and $g(x) = 2x^2 - 1$. Thus
 $\frac{df}{dg} = 2g$ and $\frac{dg}{dx} = 4x$ \therefore $\frac{dy}{dx} = 2g.(4x) = 2(2x^2 - 1)(4x) = 8x(2x^2 - 1)$
This result is easily checked by using the rule for differentiating products:
 $y = (2x^2 - 1)(2x^2 - 1)$ so $\frac{dy}{dx} = 4x(2x^2 - 1) + (2x^2 - 1)(4x) = 8x(2x^2 - 1)$ as obtained above.
(b) Here $y = f(g(x))$ where $f(g) = \ln g$ and $g(x) = e^x$. Thus
 $\frac{df}{dg} = \frac{1}{g}$ and $\frac{dg}{dx} = e^x$ \therefore $\frac{dy}{dx} = \frac{1}{g} \cdot e^x = \frac{1}{e^x} \cdot e^x = 1$
This is easily checked since, of course,
 $y = \ln e^x = x$ and so, obviously $\frac{dy}{dx} = 1$ as obtained above.

(a) Specify f and g for the first function:

f(g) = g(x) =	g(x) =	
Answer		
Answer		
Allswei		
$f(g) = g^9$ $g(x) = 2x^2 - 5x + 3$	$g(x) = 2x^2 - 5x + 3$	

Now obtain the derivative using the chain rule:

Your solution

Answer

 $9(2x^2 - 5x + 3)^8(4x - 5)$. Can you see how to obtain the derivative without going through the intermediate stage of specifying f, g?

(b) Specify f and g for the second function:

Your solution

Answer $f(g) = \sin g$ $g(x) = \cos x$

Now use the chain rule to obtain the derivative:

(c) Apply the chain rule to the third function:

Your solution	
Answer $-\frac{12(2x+1)^2}{(2x-1)^4}$	

3. Power functions

An example of a function of a function which often occurs is the so-called power function $[g(x)]^k$ where k is any rational number. This is an example of a function of a function in which

$$f(g) = g^k$$

Thus, using the chain rule: if $y = [g(x)]^k$ then $\frac{dy}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} = k g^{k-1} \frac{dg}{dx}$. For example, if $y = (\sin x + \cos x)^{1/3}$ then $\frac{dy}{dx} = \frac{1}{3}(\sin x + \cos x)^{-2/3}(\cos x - \sin x)$.

Find the derivatives of the following power functions (a) $y = \sin^3 x$ (b) $y = (x^2 + 1)^{1/2}$ (c) $y = (e^{3x})^7$

(a) Note that $\sin^3 x$ is the conventional way of writing $(\sin x)^3$. Now find its derivative:

	Your solution
	Answer $\frac{dy}{dx} = 3(\sin x)^2 \cos x$ which we would normally write as $3\sin^2 x \cos x$
(b)	Use the function of a function approach again:
	Your solution

Answer $\frac{dy}{dx} = \frac{1}{2}(x^2 + 1)^{-1/2}2x = \frac{x}{\sqrt{x^2 + 1}}$

(c) Use the function of a function approach first, and then look for a quicker way in this case:

Your solutionAnswer
$$\frac{dy}{dx} = 7(e^{3x})^6(3e^{3x}) = 21(e^{3x})^7 = 21e^{21x}$$
Note that $(e^{3x})^7 = e^{21x}$ \therefore $\frac{dy}{dx} = 21e^{21x}$ directly - a much quicker way.

Exercise

Obtain the derivatives of the following functions:

(a) $\left(\frac{2x+1}{3x-1}\right)^4$ (b) $\tan(3x^2+2x)$ (c) $\sin^2(3x^2-1)$

Answer

(a) $-\frac{20(2x+1)^3}{(3x-1)^5}$ (b) $2(3x+1)\sec^2(3x^2+2x)$ (c) $6x\sin(6x^2-2)$ (remember $\sin 2x \equiv 2\sin x \cos x$)