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In this Workbook you will learn what a complex number is and how to combine complex 
numbers together using the familiar operations of addition, subtraction, multiplication
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outcomes



Complex Arithmetic
�
�

�
�10.1

Introduction
Complex numbers are used in many areas of engineering and science. In this Section we define
what a complex number is and explore how two such numbers may be combined together by adding,
subtracting, multiplying and dividing. We also show how to find ‘complex roots’ of polynomial
equations.

A complex number is a generalisation of an ordinary real number. In fact, as we shall see, a complex
number is a pair of real numbers ordered in a particular way. Fundamental to the study of complex
numbers is the symbol i with the strange looking property i2 = −1. Apart from this property complex
numbers follow the usual rules of number algebra.
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Prerequisites
Before starting this Section you should . . .

• be able to add, subtract, multiply and divide
real numbers

• be able to combine algebraic fractions
together

• understand what a polynomial is

• have a knowledge of trigonometric identities'
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Learning Outcomes
On completion you should be able to . . .

• combine complex numbers together

• find the modulus and conjugate of a complex
number

• obtain complex solutions to polynomial
equations
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1. What is a complex number?
We assume that you are familiar with the properties of ordinary numbers; examples are

1, −2,
3

10
, 2.634, −3.111, π, e,

√
2

We all know how to add, subtract, multiply and divide such numbers. We are aware that the
numbers can be positive or negative or zero and also aware of their geometrical interpretation as
being represented by points on a ‘real’ axis known as a number line (Figure 1).
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O

Figure 1

The real axis is a line with a direction (usually chosen to be from left to right) indicated by an arrow.
We shall refer to this as the x-axis. On this axis we select a point, arbitrarily, and refer to this as the
origin O. The origin (where zero is located) distinguishes positive numbers from negative numbers:

• to the right of the origin are the positive numbers

• to the left of the origin are the negative numbers

Thus we can ‘locate’ the numbers in our example. See Figure 2.
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Figure 2

From now on we shall refer to these ‘ordinary’ numbers as real numbers. We can formalise the
algebra of real numbers into a set of rules which they obey.
So if x1, x2 and x3 are any three real numbers then we know that, in particular:

1. x1 + x2 = x2 + x1 x1 + (x2 + x3) = (x1 + x2) + x3

2. 1× x1 = x1 0× x1 = 0

3. x1 × x2 = x2 × x1 x1 × (x2 + x3) = x1 × x2 + x1 × x3

Also, in multiplication we are familiar with the elementary rules:

(positive)× (positive) = positive (positive)× (negative) = negative

(negative)× (positive) = negative (negative)× (negative) = positive

It follows that if x represents any real number then

x2 ≥ 0

in words, the square of a real number is always non-negative.

In this Workbook we will consider a kind of number (a generalisation of a real number) whose square
is not necessarily positive (and not necessarily real either). Don’t worry that i ‘does not exist’.
Because of that it is called imaginary! We just define it and get on and use it and it then turns out
to be very useful and important in many practical applications. However, it is important to get to
know how to handle complex numbers before using them in calculations. This will not be difficult as
the new set of rules is, in fact, precisely the same set of rules obeyed by the ‘real’ numbers. These
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new numbers are called complex numbers.

A complex number is an ordered pair of real numbers, usually denoted by z or w etc. So if a, b are
real numbers then we designate a complex number through:

z = a + ib

where i is a symbol obeying the rule

i2 = −1

For simplicity we shall assume we can write

i =
√
−1.

(Often, particularly in engineering applications, the symbol j is used instead of i). Also note that,
conventially, examples of actual complex numbers such as 2 + 3i are written like this and not 2 + i3.
Again we ask the reader to accept matters at this stage without worrying about the meaning of
finding the square root of a negative number. Using this notation we can write

√
−4 =

√
(4)(−1) =

√
4
√
−1 = 2i etc.

Key Point 1

The symbol i is such that
i2 = −1

Using the normal rules of algebra it follows that

i3 = i2 × i = −i i4 = i2 × i2 = (−1)× (−1) = 1

and so on.

Simple examples of complex numbers are

z1 = 3 + 2i z2 = −3 + (2.461)i z3 = 17i z4 = 3 + 0i = 3

Generally, if z = a + ib then ‘a’ is called the real part of z, or Re(z) for short, and ‘b’ is called the
imaginary part of z or Im(z). The fourth example indicates that the real numbers can be considered
a subset of the complex numbers.

Key Point 2

If z = a + ib then Re(z) = a and Im(z) = b

Both the real and imaginary parts of a complex number are real.
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Key Point 3

Two complex numbers z = a + ib and w = c + id are said to be equal if and only if both their real
parts are the same and both their imaginary parts are the same, that is

a = c and b = d

Key Point 4

The modulus of a complex number z = a + ib is denoted by |z| and is defined by

|z| =
√

a2 + b2

so that the modulus is always a non-negative real number.

Example 1
If z = 3− 2i then find Re(z), Im(z) and |z|.

Solution

Here Re(z) = 3, Im(z) = −2 and |z| =
√

32 + (−2)2 =
√

13.

Complex conjugate
If z = a+ ib is any complex number then the complex conjugate of z is denoted by z∗ and is defined
by z∗ = a − ib. (Sometimes the notation z̄ is used instead of z∗ to denote the conjugate). For
example if z = 2 − 3i then z∗ = 2 + 3i. If z is entirely real then z∗ = z whereas if z is entirely
imaginary then z∗ = −z. E.g. if z = 17i then z∗ = −17i. In fact the following relationships are
easily obtained:

Re(z) =
z + z∗

2
and Im(z) =

i(z∗ − z)

2
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Task

If z = −2 + i find expressions for Re(z∗) and Im(i(z∗ − z)).

Hint: first find z∗, z∗ − z, and i(z∗ − z):

Your solution

Answer

Re(z∗) = −2 and Im(i(z∗ − z)) = 0

2. The algebra of complex numbers
Complex numbers are added, subtracted, multiplied and divided in much the same way as these
operations are carried out for real numbers.

Addition and subtraction of complex numbers
Let z and w be any two complex numbers

z = a + ib w = c + id

then

z + w = (a + c) + i(b + d) z − w = (a− c) + i(b− d)

For example if z = 2− 3i, w = −4 + 2i then

z + w = {2 + (−4)}+ {(−3) + 2}i = −2− i z −w = {2− (−4)}+ {(−3)− 2}i = 6− 5i

Multiplying one complex number by another
In multiplication we proceed using an obvious approach: again consider any two complex numbers
z = a + ib and w = c + id. Then

zw = (a + ib)(c + id)

= ac + aid + ibc + i2bd

obtained in the usual way by multiplying all the terms in one bracket by all the terms in the other
bracket. Now we use the fundamental relation i2 = −1 so that

zw = ac + aid + ibc− bd

= ac− bd + i(ad + bc)

where we have re-grouped terms with the ‘i’ symbol and terms without the ‘i’ symbol separately.
These are the real and imaginary parts of the product zw respectively. A numerical example will
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confirm the approach. If z = 2− 3i and w = −4 + 2i then

zw = (2− 3i)(−4 + 2i)

= 2(−4) + 2(2i)− 3i(−4)− 3i(2i)

= −8 + 4i + 12i− 6i2

= −8 + 16i + 6

= −2 + 16i

Task

If z = −2 + i and w = 3 + 2i find expressions for

(a) z + 2w, (b) |z − w| and (c) zw

Your solution

(a)

Answer

z + 2w = 4 + 5i

Your solution

(b) Hint: you should find that z − w = −5− i

Answer

|z − w| =
√

(−5)2 + (−1)2 =
√

26

Your solution

(c)

Answer

zw = −6 + 3i− 4i + 2i2 = −8− i

In general the square of a complex number is not necessarily a positive real number; it may not even
be real at all. For example if z = −2 + i then

z2 = (−2 + i)2 = 4− 4i + i2 = 4− 4i− 1 = 3− 4i

However, the product of a complex number with its conjugate is always a non-negative real number.
If z = a + ib then

zz∗ = (a + ib)(a− ib)

= a2 − a(ib) + (ib)a− i2b2

= a2 − i2b2

= a2 + b2 since i2 = −1
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For example, if z = 2 + i then

zz∗ = (2 + i)(2− i) = 4 + 1 = 5

Task

Show, for any complex number z = a + ib that zz∗ = |z|2.

Your solution

Answer

By definition |z| =
√

a2 + b2, so that |z|2 = a2 + b2. Now zz∗ = a2 + b2 so that zz∗ = |z|2.

Dividing one complex number by another
Here we consider the operation of dividing one complex number z = a + ib by another, w = c + id:

z

w
=

a + ib

c + id

We wish to simplify the right-hand side into the standard form of a complex number (this is called
the Cartesian form):

(Real part) + i (Imaginary part)

or the equivalent:

(Real part) + (Imaginary part) i

To do this we multiply ‘top and bottom’ by the complex conjugate of the bottom (the denominator),
that is, by c− id (this is called rationalising):

z

w
=

a + ib

c + id
=

a + ib

c + id
× c− id

c− id

and then carry out the multiplication, top and bottom:

z

w
=

(ac + bd) + i(bc− ad)

c2 + d2

=

(
ac + bd

c2 + d2

)
+ i

(
bc− ad

c2 + d2

)
which is now in the required form.

The reason for rationalising is to get a real number in the denominator since a complex number
divided by a real number is easy to evaluate.
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Example 2
Find

z

w
if z = 2− 3i and w = 2 + i.

Solution

z

w
=

2− 3i

2 + i
=

(2− 3i)× (2− i)

(2 + i)× (2− i)
rationalising

=
4− 3 + i(−6− 2)

4 + 1
multiplying out

=
1

5
− 8

5
i dividing through

Task

If z = 3− i and w = 1 + 3i find
2z + 3w

2z − 3w
.

Your solution

Answer

2z + 3w

2z − 3w
=

9 + 7i

3− 11i
=

(9 + 7i)(3 + 11i)

(3− 11i)(3 + 11i)

=
27− 77 + (21 + 99)i

9 + 121

= − 50

130
+

120

130
i = − 5

13
+

12

13
i
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Exercises

1. If z = 2− i, w = 3 + 4i find expressions (in standard Cartesian form) for

(a) z − 3w, (b) zw∗ (c)
( z

w

)∗
(d)

∣∣∣ z

w

∣∣∣
2. Verify the following statements for general complex numbers z = a + ib and w = c + id

(a)
∣∣∣ z

w

∣∣∣ =
|z|
|w|

(b) (zw)∗ = z∗w∗ (c) Re(z) =
z + z∗

2
(d) Im(z) =

i(z∗ − z)

2
.

3. Find z such that zz∗ + 3(z − z∗) = 13 + 12i

Answers

1. (a) −7− 13i (b) 2− 11i (c)
2

25
+

11

25
i (d)

√
5

5

2. Note that since z∗ − z is imaginary then i(z∗ − z) is real!

3. z = ±3 + 2i

3. Solutions of polynomial equations
With the introduction of complex numbers we can now obtain solutions to those polynomial equations
which may have real solutions, complex solutions or a combination of real and complex solutions.
For example, the simple quadratic equation:

x2 + 16 = 0 can be rearranged: x2 = −16

and then taking square roots:

x = ±
√
−16 = ±4

√
−1 = ±4i

where we are replacing
√
−1 by the symbol ‘i’.

This approach can be extended to the general quadratic equation

ax2 + bx + c = 0 with roots x =
−b±

√
b2 − 4ac

2a

so that for example, if

3x2 + 2x + 2 = 0

then solving for x:

x =
−2±

√
4− 4(3)(2)

2(3)

=
−2±

√
−20

6
=
−2± i

√
20

6

so, (as

√
20

6
=

2
√

5

6
=

√
5

3
), the two roots are −1

3
+

√
5

3
i and −1

3
−
√

5

3
i.

In this example we see that the two solutions (roots) are complex conjugates of each other. In fact
this will always be the case if the polynomial equation has real coefficients: that is, if any complex
roots occur they will always occur in complex conjugate pairs.
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Key Point 5

Complex roots to polynomial equations having real coefficients

always occur in complex conjugate pairs

Example 3
Given that x = 3− 2i is one root of the cubic equation x3 − 7x2 + 19x− 13 = 0
find the other two roots.

Solution

Since the coefficients of the equation are real and 3−2i is a root then its complex conjugate 3+2i is
also a root which implies that x− (3− 2i) and x− (3+2i) are factors of the given cubic expression.
Multiplying together these two factors:

(x− (3− 2i))(x− (3 + 2i)) = x2 − x(3− 2i)− x(3 + 2i) + 13 = x2 − 6x + 13

So x2 − 6x + 13 is a quadratic factor of the cubic equation. The remaining factor must take the
form (x+ a) where a is real, since only one more linear factor of the cubic equation is required, and
so we write:

x3 − 7x2 + 19x− 13 = (x2 − 6x + 13)(x + a)

By inspection (consider for example the constant terms), it is clear that a = −1 so that the final
factor is (x− 1), implying that the original cubic equation has a root at x = 1.

Exercises

1. Find the roots of the equation x2 + 2x + 2 = 0.

2. If i is one root of the cubic equation x3 + 2x2 + x + 2 = 0 find the two other roots.

3. Find the complex number z if 2z + z∗ + 3i + 2 = 0.

4. If z = cos θ + i sin θ show that
z

z∗
= cos 2θ + i sin 2θ.

Answers 1. x = −1± i 2. −i, −2 3. −2

3
− 3i
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