Even and Odd Functions

Introduction

In this Section we examine how to obtain Fourier series of periodic functions which are either even or odd. We show that the Fourier series for such functions is considerably easier to obtain as, if the signal is even only cosines are involved whereas if the signal is odd then only sines are involved. We also show that if a signal reverses after half a period then the Fourier series will only contain odd harmonics.

- know how to obtain a Fourier series
- be able to integrate functions involving sinusoids
Before starting this Section you should ...
- have knowledge of integration by parts
- determine if a function is even or odd or

Learning Outcomes

On completion you should be able to neither

- easily calculate Fourier coefficients of even or odd functions

1. Even and odd functions

We have shown in the previous Section how to calculate, by integration, the coefficients a_{n} ($n=$ $0,1,2,3, \ldots)$ and $b_{n}(n=1,2,3, \ldots)$ in a Fourier series. Clearly this is a somewhat tedious process and it is advantageous if we can obtain as much information as possible without recourse to integration. In the previous Section we showed that the square wave (one period of which shown in Figure 12) has a Fourier series containing a constant term and cosine terms only (i.e. all the Fourier coefficients b_{n} are zero) while the function shown in Figure 13 has a more complicated Fourier series containing both cosine and sine terms as well as a constant.

Figure 12: Square wave

Figure 13: Saw-tooth wave

Contrast the symmetry or otherwise of the functions in Figures 12 and 13.

Your solution

Answer

The square wave in Figure 12 has a graph which is symmetrical about the y-axis and is called an even function. The saw-tooth wave shown in Figure 13 has no particular symmetry.

In general a function is called even if its graph is unchanged under reflection in the y-axis. This is equivalent to

$$
f(-t)=f(t) \quad \text { for all } t
$$

Obvious examples of even functions are $t^{2}, t^{4},|t|, \cos t, \cos ^{2} t, \sin ^{2} t, \cos n t$.
A function is said to be odd if its graph is symmetrical about the origin (i.e. it has rotational symmetry about the origin). This is equivalent to the condition

$$
f(-t)=-f(t)
$$

Figure 14 shows an example of an odd function.

Figure 14
Examples of odd functions are $t, t^{3}, \sin t, \sin n t$. A periodic function which is odd is the saw-tooth wave in Figure 15.

Figure 15
Some functions are neither even nor odd. The periodic saw-tooth wave of Figure 13 is an example; another is the exponential function e^{t}.

State the period of each of the following periodic functions and say whether it is even or odd or neither.

Your solution

Answer

(a) is neither even nor odd (with period 2π)
(b) is odd (with period π).

A Fourier series contains a sum of terms while the integral formulae for the Fourier coefficients a_{n} and b_{n} contain products of the type $f(t) \cos n t$ and $f(t) \sin n t$. We need therefore results for sums and products of functions.

Suppose, for example, $g(t)$ is an odd function and $h(t)$ is an even function.

$$
\begin{array}{lrl}
\text { Let } & F_{1}(t) & =g(t) h(t) \\
& & \\
\text { so } & F_{1}(-t) & =g(-t) h(-t) \\
& & \text { (repluct of odd and even functions) } \\
& =(-g(t)) h(t) & \\
& & \text { (since } g \text { is odd and } h \text { is even) } \\
& =-g(t) h(t) &
\end{array}
$$

So $F_{1}(t)$ is odd.

Now suppose

$$
\begin{aligned}
F_{2}(t) & =g(t)+h(t) \quad \text { (sum of odd and even functions) } \\
\therefore \quad F_{2}(-t) & =g(-t)+h(t) \\
& =-g(t)+h(t)
\end{aligned}
$$

We see that

$$
F_{2}(-t) \neq F_{2}(t)
$$

and

$$
F_{2}(-t) \neq-F_{2}(t)
$$

So $F_{2}(t)$ is neither even nor odd.

Investigate the odd/even nature of sums and products of
(a) two odd functions $g_{1}(t), g_{2}(t)$
(b) two even functions $h_{1}(t), h_{2}(t)$

Your solution

Answer

$$
\begin{aligned}
G_{1}(t) & =g_{1}(t) g_{2}(t) \\
G_{1}(-t) & =\left(-g_{1}(t)\right)\left(-g_{2}(t)\right) \\
& =g_{1}(t) g_{2}(t) \\
& =G_{1}(t)
\end{aligned}
$$

so the product of two odd functions is even.

$$
\begin{aligned}
G_{2}(t) & =g_{1}(t)+g_{2}(t) \\
G_{2}(-t) & =g_{1}(-t)+g_{2}(-t) \\
& =-g_{1}(t)-g_{2}(t) \\
& =-G_{2}(t)
\end{aligned}
$$

so the sum of two odd functions is odd.

$$
\begin{aligned}
H_{1}(t) & =h_{1}(t) h_{2}(t) \\
H_{2}(t) & =h_{1}(t)+h_{2}(t)
\end{aligned}
$$

A similar approach shows that

$$
\begin{aligned}
H_{1}(-t) & =H_{1}(t) \\
H_{2}(-t) & =H_{2}(t)
\end{aligned}
$$

ie. both the sum and product of two even functions are even.

These results are summarized in the following Key Point.
\square

Key Point 5

Products of functions

$$
\begin{aligned}
(\text { even }) \times(\text { even }) & =(\text { even }) \\
(\text { even }) \times(\text { odd }) & =(\text { odd }) \\
(\text { odd }) \times(\text { odd }) & =(\text { even })
\end{aligned}
$$

Sums of functions

$$
\begin{aligned}
(\text { even })+(\text { even }) & =(\text { even }) \\
(\text { even })+(\text { odd }) & =(\text { neither }) \\
(\text { odd })+(\text { odd }) & =(\text { odd })
\end{aligned}
$$

Useful properties of even and of odd functions in connection with integrals can be readily deduced if we recall that a definite integral has the significance of giving us the value of an area:

Figure 16
$\int_{a}^{b} f(t) d t$ gives us the net value of the shaded area, that above the t-axis being positive, that below being negative.

Task

For the case of a symmetrical interval $(-a, a)$ deduce what you can about

$$
\int_{-a}^{a} g(t) d t \quad \text { and } \quad \int_{-a}^{a} h(t) d t
$$

where $g(t)$ is an odd function and $h(t)$ is an even function.

Your solution

Answer

We have

$$
\begin{aligned}
& \int_{-a}^{a} g(t) d t=0 \quad \text { for an odd function } \\
& \int_{-a}^{a} h(t) d t=2 \int_{0}^{a} h(t) d t \quad \text { for an even function }
\end{aligned}
$$

(Note that neither result holds for a function which is neither even nor odd.)

2. Fourier series implications

Since a sum of even functions is itself an even function it is not unreasonable to suggest that a Fourier series containing only cosine terms (and perhaps a constant term which can also be considered as an even function) can only represent an even periodic function. Similarly a series of sine terms (and no constant) can only represent an odd function. These results can readily be shown more formally using the expressions for the Fourier coefficients a_{n} and b_{n}.

Recall that for a 2π-periodic function

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t
$$

If $f(t)$ is even, deduce whether the integrand is even or odd (or neither) and hence evaluate b_{n}. Repeat for the Fourier coefficients a_{n}.

Your solution

Answer

We have, if $f(t)$ is even,

$$
f(t) \sin n t=(\text { even }) \times(\text { odd })=\text { odd }
$$

hence $b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}$ (odd function) $d t=0$
Thus an even function has no sine terms in its Fourier series.
Also $f(t) \cos n t=($ even $) \times($ even $)=$ even

$$
\therefore \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}(\text { even function }) d t=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t .
$$

It should be obvious that, for an odd function $f(t)$,

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{-\pi}^{\pi}(\text { odd function }) d t=0 \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t
\end{aligned}
$$

Analogous results hold for functions of any period, not necessarily 2π.

For a periodic function which is neither even nor odd we can expect at least some of both the a_{n} and b_{n} to be non-zero. For example consider the square wave function:

Figure 17: Square wave
This function is neither even nor odd and we have already seen in Section 23.2 that its Fourier series contains a constant $\left(\frac{1}{2}\right)$ and sine terms.
This result could be expected because we can write

$$
f(t)=\frac{1}{2}+g(t)
$$

where $g(t)$ is as shown:

Figure 18
Clearly $g(t)$ is odd and will contain only sine terms. The Fourier series are in fact

$$
f(t)=\frac{1}{2}+\frac{2}{\pi}\left(\sin t+\frac{1}{3} \sin 3 t+\frac{1}{5} \sin 5 t+\ldots\right)
$$

and

$$
g(t)=\frac{2}{\pi}\left(\sin t+\frac{1}{3} \sin 3 t+\frac{1}{5} \sin 5 t+\ldots\right)
$$

For each of the following functions deduce whether the corresponding Fourier series contains
(a) sine terms only or cosine terms only or both
(b) a constant term

2

4

$\xrightarrow[0]{2}$

Your solution

Answer

1. cosine terms only (plus constant).
2. cosine terms only (no constant).
3. sine terms only (no constant).
4. sine terms only (no constant).
5. cosine terms only (plus constant).

Task
Confirm the result obtained for the triangular wave, function 7 in the last Task, by finding the Fourier series fully. The function involved is

$$
\begin{array}{rlr}
f(t) & =|t| \quad-\pi<t<\pi \\
f(t+2 \pi) & =f(t) &
\end{array}
$$

Your solution

Answer

Since $f(t)$ is even we can say immediately

$$
b_{n}=0 \quad n=1,2,3, \ldots
$$

Also

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} t \cos n t d t=\left\{\begin{array}{cc}
0 & n \text { even } \\
-\frac{4}{n^{2} \pi} & n \text { odd }
\end{array} \quad\right. \text { (after integration by parts) }
$$

Also $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} t d t=\pi$ so the Fourier series is

$$
f(t)=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos t+\frac{1}{9} \cos 3 t+\frac{1}{25} \cos 5 t+\ldots\right)
$$

