The Hyperbolic Functions

Introduction

The hyperbolic functions $\sinh x, \cosh x, \tanh x$ etc are certain combinations of the exponential functions e^{x} and e^{-x}. The notation implies a close relationship between these functions and the trigonometric functions $\sin x, \cos x, \tan x$ etc. The close relationship is algebraic rather than geometrical. For example, the functions $\cosh x$ and $\sinh x$ satisfy the relation

$$
\cosh ^{2} x-\sinh ^{2} x \equiv 1
$$

which is very similar to the trigonometric identity $\cos ^{2} x+\sin ^{2} x \equiv 1$. (In fact every trigonometric identity has an equivalent hyperbolic function identity.)

The hyperbolic functions are not introduced because they are a mathematical nicety. They arise naturally and sufficiently often to warrant sustained study. For example, the shape of a chain hanging under gravity is well described by cosh and the deformation of uniform beams can be expressed in terms of tanh.

- have a good knowledge of the exponential function

Prerequisites
Before starting this Section you should ...

Learning Outcomes

On completion you should be able to ...

- have knowledge of odd and even functions
- have familiarity with the definitions of tan, sec, cosec, cot and of trigonometric identities
- explain how hyperbolic functions are defined in terms of exponential functions
- obtain and use hyperbolic function identities
- manipulate expressions involving hyperbolic functions

1. Even and odd functions

Constructing even and odd functions

A given function $f(x)$ can always be split into two parts, one of which is even and one of which is odd. To do this write $f(x)$ as $\frac{1}{2}[f(x)+f(x)]$ and then simply add and subtract $\frac{1}{2} f(-x)$ to this to give

$$
f(x)=\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)]
$$

The term $\frac{1}{2}[f(x)+f(-x)]$ is even because when x is replaced by $-x$ we have $\frac{1}{2}[f(-x)+f(x)]$ which is the same as the original. However, the term $\frac{1}{2}[f(x)-f(-x)]$ is odd since, on replacing x by $-x$ we have $\frac{1}{2}[f(-x)-f(x)]=-\frac{1}{2}[f(x)-f(-x)]$ which is the negative of the original.

Example 2

Separate $x^{3}+2^{x}$ into odd and even parts.

Solution

$$
\begin{aligned}
& f(x)=x^{3}+2^{x} \\
& f(-x)=(-x)^{3}+2^{-x}=-x^{3}+2^{-x}
\end{aligned}
$$

Even part:

$$
\frac{1}{2}(f(x)+f(-x))=\frac{1}{2}\left(x^{3}+2^{x}-x^{3}+2^{-x}\right)=\frac{1}{2}\left(2^{x}+2^{-x}\right)
$$

Odd part:

$$
\frac{1}{2}(f(x)-f(-x))=\frac{1}{2}\left(x^{3}+2^{x}+x^{3}-2^{-x}\right)=\frac{1}{2}\left(2 x^{3}+2^{x}-2^{-x}\right)
$$

Task

(1)

Separate the function $x^{2}-3^{x}$ into odd and even parts.

First, define $f(x)$ and find $f(-x)$:

Your solution

$$
f(x)=\quad f(-x)=
$$

Answer

$$
f(x)=x^{2}-3^{x}, \quad f(-x)=x^{2}-3^{-x}
$$

Now construct $\frac{1}{2}[f(x)+f(-x)], \quad \frac{1}{2}[f(x)-f(-x)]$:

Your solution

$$
\frac{1}{2}[f(x)+f(-x)]=\quad \frac{1}{2}[f(x)-f(-x)]=
$$

Answer

$$
\begin{aligned}
\frac{1}{2}[f(x)+f(-x)] & =\frac{1}{2}\left(x^{2}-3^{x}+x^{2}-3^{-x}\right) \\
& =x^{2}-\frac{1}{2}\left(3^{x}+3^{-x}\right) . \text { This is the even part of } f(x) . \\
\frac{1}{2}[f(x)-f(-x)] & =\frac{1}{2}\left(x^{2}-3^{x}-x^{2}+3^{-x}\right) \\
& =\frac{1}{2}\left(3^{-x}-3^{x}\right) . \text { This is the odd part of } f(x) .
\end{aligned}
$$

The odd and even parts of the exponential function

Using the approach outlined above we see that the even part of e^{x} is

$$
\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

and the odd part of e^{x} is

$$
\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)
$$

We give these new functions special names: $\cosh x$ (pronounced 'cosh' x) and $\sinh x$ (pronounced ‘shine' x).

Key Point 3

Hyperbolic Functions

$$
\begin{aligned}
\cosh x & \equiv \frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \\
\sinh x & \equiv \frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)
\end{aligned}
$$

These two functions, when added and subtracted, give

$$
\cosh x+\sinh x \equiv \mathrm{e}^{x} \quad \text { and } \quad \cosh x-\sinh x \equiv \mathrm{e}^{-x}
$$

The graphs of $\cosh x$ and $\sinh x$ are shown in Figure 4.

Figure 4: $\sinh x$ and $\cosh x$
Note that $\cosh x>0$ for all values of x and that $\sinh x$ is zero only when $x=0$.

2. Hyperbolic identities

The hyperbolic functions $\cosh x, \sinh x$ satisfy similar (but not exactly equivalent) identities to those satisfied by $\cos x, \sin x$. We note first some basic notation similar to that employed with trigonometric functions:

$$
\cosh ^{n} x \text { means }(\cosh x)^{n} \quad \sinh ^{n} x \text { means }(\sinh x)^{n} \quad n \neq-1
$$

In the special case that $n=-1$ we do not use $\cosh ^{-1} x$ and $\sinh ^{-1} x$ to mean $\frac{1}{\cosh x}$ and $\frac{1}{\sinh x}$ respectively. The notation $\cosh ^{-1} x$ and $\sinh ^{-1} x$ is reserved for the inverse functions of $\cosh x$ and $\sinh x$ respectively.

Show that $\quad \cosh ^{2} x-\sinh ^{2} x \equiv 1 \quad$ for all x.
(a) First, express $\cosh ^{2} x$ in terms of the exponential functions $\mathrm{e}^{x}, \mathrm{e}^{-x}$:

Your solution

$$
\cosh ^{2} x \equiv\left[\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right]^{2} \equiv
$$

Answer

$\frac{1}{4}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2} \equiv \frac{1}{4}\left[\left(\mathrm{e}^{x}\right)^{2}+2 \mathrm{e}^{x} \mathrm{e}^{-x}+\left(\mathrm{e}^{-x}\right)^{2}\right] \equiv \frac{1}{4}\left[\mathrm{e}^{2 x}+2 \mathrm{e}^{x-x}+\mathrm{e}^{-2 x}\right] \equiv \frac{1}{4}\left[\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right]$
(b) Similarly, express $\sinh ^{2} x$ in terms of e^{x} and e^{-x} :

Your solution

$\sinh ^{2} x \equiv\left[\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right]^{2} \equiv$

Answer

$$
\frac{1}{4}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2} \equiv \frac{1}{4}\left[\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x} \mathrm{e}^{-x}+\left(\mathrm{e}^{-x}\right)^{2}\right] \equiv \frac{1}{4}\left[\mathrm{e}^{2 x}-2 \mathrm{e}^{x-x}+\mathrm{e}^{-2 x}\right] \equiv \frac{1}{4}\left[\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right]
$$

(c) Finally determine $\cosh ^{2} x-\sinh ^{2} x$ using the results from (a) and (b):

Your solution

$$
\cosh ^{2} x-\sinh ^{2} x \equiv
$$

Answer

$\cosh ^{2} x-\sinh ^{2} x \equiv \frac{1}{4}\left[\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right]-\frac{1}{4}\left[\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right] \equiv 1$
As an alternative to the calculation in this Task we could, instead, use the relations

$$
\mathrm{e}^{x} \equiv \cosh x+\sinh x \quad \mathrm{e}^{-x} \equiv \cosh x-\sinh x
$$

and remembering the algebraic identity $(a+b)(a-b) \equiv a^{2}-b^{2}$, we see that

$$
(\cosh x+\sinh x)(\cosh x-\sinh x) \equiv \mathrm{e}^{x} \mathrm{e}^{-x} \equiv 1 \quad \text { that is } \quad \cosh ^{2} x-\sinh ^{2} x \equiv 1
$$

Key Point 4

The fundamental identity relating hyperbolic functions is:

$$
\cosh ^{2} x-\sinh ^{2} x \equiv 1
$$

This is the hyperbolic function equivalent of the trigonometric identity: $\cos ^{2} x+\sin ^{2} x \equiv 1$

Show that $\cosh (x+y) \equiv \cosh x \cosh y+\sinh x \sinh y$.

First, express $\cosh x \cosh y$ in terms of exponentials:

Your solution

$\cosh x \cosh y \equiv\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{y}+\mathrm{e}^{-y}}{2}\right) \equiv$

Answer

$\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{y}+\mathrm{e}^{-y}}{2}\right) \equiv \frac{1}{4}\left[\mathrm{e}^{x} \mathrm{e}^{y}+\mathrm{e}^{-x} \mathrm{e}^{y}+\mathrm{e}^{x} \mathrm{e}^{-y}+\mathrm{e}^{-x} \mathrm{e}^{-y}\right] \equiv \frac{1}{4}\left(\mathrm{e}^{x+y}+\mathrm{e}^{-x+y}+\mathrm{e}^{x-y}+\mathrm{e}^{-x-y}\right)$

Now express $\sinh x \sinh y$ in terms of exponentials:

Your solution

$$
\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{2}\right) \equiv
$$

Answer

$$
\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{2}\right) \equiv \frac{1}{4}\left(\mathrm{e}^{x+y}-\mathrm{e}^{-x+y}-\mathrm{e}^{x-y}+\mathrm{e}^{-x-y}\right)
$$

Now express $\quad \cosh x \cosh y+\sinh x \sinh y \quad$ in terms of a hyperbolic function:

Your solution

$\cosh x \cosh y+\sinh x \sinh y=$

Answer

$\cosh x \cosh y+\sinh x \sinh y \equiv \frac{1}{2}\left(\mathrm{e}^{x+y}+\mathrm{e}^{-(x+y)}\right)$ which we recognise as $\cosh (x+y)$

Other hyperbolic function identities can be found in a similar way. The most commonly used are listed in the following Key Point.

Key Point 5

Hyperbolic Identities

- $\cosh ^{2}-\sinh ^{2} \equiv 1$
- $\cosh (x+y) \equiv \cosh x \cosh y+\sinh x \sinh y$
- $\quad \sinh (x+y) \equiv \sinh x \cosh y+\cosh x \sinh y$
- $\quad \sinh 2 x \equiv 2 \sinh x \cosh y$
- $\cosh 2 x \equiv \cosh ^{2} x+\sinh ^{2} x \quad$ or $\quad \cosh 2 x \equiv 2 \cosh ^{2}-1 \quad$ or $\quad \cosh 2 x \equiv 1+2 \sinh ^{2} x$

3. Related hyperbolic functions

Given the trigonometric functions $\cos x, \sin x$ related functions can be defined; $\tan x, \sec x, \operatorname{cosec} x$ through the relations:

$$
\tan x \equiv \frac{\sin x}{\cos x} \quad \sec x \equiv \frac{1}{\cos x} \quad \operatorname{cosec} x \equiv \frac{1}{\sin x} \quad \cot x \equiv \frac{\cos x}{\sin x}
$$

In an analogous way, given $\cosh x$ and $\sinh x$ we can introduce hyperbolic functions $\tanh x, \operatorname{sech} x$, $\operatorname{cosech} x$ and $\operatorname{coth} x$. These functions are defined in the following Key Point:

Key Point 6

Further Hyperbolic Functions

$$
\begin{aligned}
\tanh x & \equiv \frac{\sinh x}{\cosh x} \\
\operatorname{sech} x & \equiv \frac{1}{\cosh x} \\
\operatorname{cosech} x & \equiv \frac{1}{\sinh x} \\
\operatorname{coth} x & \equiv \frac{\cosh x}{\sinh x}
\end{aligned}
$$

Use the identity $\cosh ^{2} x-\sinh ^{2} x \equiv 1$:

Your solution

Answer

Dividing both sides by $\cosh ^{2} x$ gives

$$
1-\frac{\sinh ^{2} x}{\cosh ^{2} x} \equiv \frac{1}{\cosh ^{2} x} \quad \text { implying (see Key Point 6) } \quad 1-\tanh ^{2} x \equiv \operatorname{sech}^{2} x
$$

Exercises

1. Express

(a) $2 \sinh x+3 \cosh x$ in terms of e^{x} and e^{-x}.
(b) $2 \sinh 4 x-7 \cosh 4 x$ in terms of $\mathrm{e}^{4 x}$ and $\mathrm{e}^{-4 x}$.
2. Express
(a) $2 \mathrm{e}^{x}-\mathrm{e}^{-x}$ in terms of $\sinh x$ and $\cosh x$.
(b) $\frac{7 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}$ in terms of $\sinh x$ and $\cosh x$, and then in terms of $\operatorname{coth} x$.
(c) $4 \mathrm{e}^{-3 x}-3 \mathrm{e}^{3 x}$ in terms of $\sinh 3 x$ and $\cosh 3 x$.
3. Using only the cosh and sinh keys on your calculator (or e^{x} key) find the values of
(a) $\tanh 0.35$,
(b) cosech 2 ,
(c) sech 0.6.

Answers

1. (a) $\frac{5}{2} \mathrm{e}^{x}-\frac{1}{2} \mathrm{e}^{-x}$
(b) $-\frac{5}{2} \mathrm{e}^{4 x}-\frac{9}{2} \mathrm{e}^{-4 x}$
2. (a) $\cosh x+3 \sinh x$,
(b) $\frac{7(\cosh x+\sinh x)}{2 \sinh x}, \quad \frac{7}{2}(\operatorname{coth} x+1)$
(c) $\cosh 3 x-7 \sinh 3 x$
3. (a) 0.3364,
(b) 0.2757
(c) 0.8436
