Implicit

Differentiation

Introduction

This Section introduces implicit differentiation which is used to differentiate functions expressed in implicit form (where the variables are found together). Examples are $x^{3}+x y+y^{2}=1$, and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which represents an ellipse.

Prerequisites
Before starting this Section you should

- be able to differentiate standard functions
- be competent in using the chain rule
- differentiate functions expressed implicitly

On completion you should be able to ...

1. Implicit and explicit functions

Equations such as $y=x^{2}, y=\frac{1}{x}, y=\sin x$ are said to define y explicitly as a function of x because the variable y appears alone on one side of the equation.
The equation

$$
y x+y+1=x
$$

is not of the form $y=f(x)$ but can be put into this form by simple algebra.

Write y as the subject of

$$
y x+y+1=x
$$

Your solution

Answer

We have $y(x+1)=x-1$ so

$$
y=\frac{x-1}{x+1}
$$

We say that y is defined implicitly as a function of x by means of $y x+y+1=x$, the actual function being given explicitly as

$$
y=\frac{x-1}{x+1}
$$

We note than an equation relating x and y can implicitly define more than one function of x.
For example, if we solve

$$
x^{2}+y^{2}=1
$$

we obtain $y= \pm \sqrt{1-x^{2}}$ so $x^{2}+y^{2}=1$ defines implicitly two functions

$$
f_{1}(x)=\sqrt{1-x^{2}} \quad f_{2}(x)=-\sqrt{1-x^{2}}
$$

Sketch the graphs of $f_{1}(x)=\sqrt{1-x^{2}} \quad f_{2}(x)=-\sqrt{1-x^{2}}$
(The equation $x^{2}+y^{2}=1$ should give you the clue.)

Your solution

Answer

Since $x^{2}+y^{2}=1$ is the well-known equation of the circle with centre at the origin and radius 1 , it follows that the graphs of $f_{1}(x)$ and $f_{2}(x)$ are the upper and lower halves of this circle.

Sometimes it is difficult or even impossible to solve an equation in x and y to obtain y explicitly in terms of x.

Examples where explicit expressions for y cannot be obtained are

$$
\sin (x y)=y \quad x^{2}+\sin y=2 y
$$

2. Differentiation of implicit functions

Fortunately it is not necessary to obtain y in terms of x in order to differentiate a function defined implicitly.

Consider the simple equation

$$
x y=1
$$

Here it is clearly possible to obtain y as the subject of this equation and hence obtain $\frac{d y}{d x}$.

Your solution

Answer

We have immediately

$$
y=\frac{1}{x} \quad \text { so } \quad \frac{d y}{d x}=-\frac{1}{x^{2}}
$$

We now show an alternative way of obtaining $\frac{d y}{d x}$ which does not involve writing y explicitly in terms of x at the outset. We simply treat y as an (unspecified) function of x.
Hence if $x y=1$ we obtain

$$
\frac{d}{d x}(x y)=\frac{d}{d x}(1)
$$

The right-hand side differentiates to zero as 1 is a constant. On the left-hand side we must use the product rule of differentiation:

$$
\frac{d}{d x}(x y)=x \frac{d y}{d x}+y \frac{d x}{d x}=x \frac{d y}{d x}+y
$$

Hence $x y=1$ becomes, after differentiation,

$$
x \frac{d y}{d x}+y=0 \quad \text { or } \quad \frac{d y}{d x}=-\frac{y}{x}
$$

In this case we can of course substitute $y=\frac{1}{x}$ to obtain

$$
y=-\frac{1}{x^{2}}
$$

as before.
The method used here is called implicit differentiation and, apart from the final step, it can be applied even if y cannot be expressed explicitly in terms of x. Indeed, on occasions, it is easier to differentiate implicitly even if an explicit expression is possible.

Example 15

Obtain the derivative $\frac{d y}{d x}$ where

$$
x^{2}+y=1+y^{3}
$$

Solution

We begin by differentiating the left-hand side of the equation with respect to x to get:

$$
\frac{d}{d x}\left(x^{2}+y\right)=2 x+\frac{d y}{d x} .
$$

We now differentiate the right-hand side of with respect to x. Using the chain (or function of a function) rule to deal with the y^{3} term:

$$
\frac{d}{d x}\left(1+y^{3}\right)=\frac{d}{d x}(1)+\frac{d}{d x}\left(y^{3}\right)=0+3 y^{2} \frac{d y}{d x}
$$

Now by equating the left-hand side and right-hand side derivatives, we have:

$$
2 x+\frac{d y}{d x}=3 y^{2} \frac{d y}{d x}
$$

We can make $\frac{d y}{d x}$ the subject of this equation:

$$
\frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=-2 x \quad \text { which gives } \quad \frac{d y}{d x}=\frac{2 x}{3 y^{2}-1}
$$

We note that $\frac{d y}{d x}$ has to be expressed in terms of both x and y. This is quite usual if y cannot be obtained explicitly in terms of x. Now try this Task requiring implicit differentiation.

Find $\frac{d y}{d x}$ if $2 y=x^{2}+\sin y$
Note that your answer will be in terms of both y and x.

Your solution

Answer

We have, on differentiating both sides of the equation with respect to x and using the chain rule on the $\sin y$ term:
$\frac{d}{d x}(2 y)=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(\sin y)$ i.e. $2 \frac{d y}{d x}=2 x+\cos y \frac{d y}{d x} \quad$ leading to $\quad \frac{d y}{d x}=\frac{2 x}{2-\cos y}$.

We sometimes need to obtain the second derivative $\frac{d^{2} y}{d x^{2}}$ for a function defined implicitly.

Example 16

Obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(4,2)$ on the curve defined by the equation

$$
x^{2}-x y-y^{2}-2 y=0
$$

Solution

Firstly we obtain $\frac{d y}{d x}$ by differentiating the equation implicitly and then evaluate it at $(4,2)$.

$$
\begin{equation*}
\text { We have } \quad 2 x-x \frac{d y}{d x}-y-2 y \frac{d y}{d x}-2 \frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

from which $\quad \frac{d y}{d x}=\frac{2 x-y}{x+2 y+2}$
so at $(4,2) \frac{d y}{d x}=\frac{6}{10}=\frac{3}{5}$.
To obtain the second derivative $\frac{d^{2} y}{d x^{2}}$ it is easier to use (1) than (2) because the latter is a quotient. We simplify (1) first:

$$
\begin{equation*}
2 x-y-(x+2 y+2) \frac{d y}{d x}=0 \tag{3}
\end{equation*}
$$

We will have to use the product rule to differentiate the third term here.
Hence differentiating (3) with respect to x :

$$
2-\frac{d y}{d x}-(x+2 y+2) \frac{d^{2} y}{d x^{2}}-\left(1+2 \frac{d y}{d x}\right) \frac{d y}{d x}=0
$$

or

$$
\begin{equation*}
2-2 \frac{d y}{d x}-2\left(\frac{d y}{d x}\right)^{2}-(x+2 y+2) \frac{d^{2} y}{d x^{2}}=0 \tag{4}
\end{equation*}
$$

Note carefully that the third term here, $\left(\frac{d y}{d x}\right)^{2}$, is the square of the first derivative. It should not be confused with the second derivative denoted by $\frac{d^{2} y}{d x^{2}}$.
Finally, at $(4,2)$ where $\frac{d y}{d x}=\frac{3}{5}$ we obtain from (4): $\quad 2-2\left(\frac{3}{5}\right)-2\left(\frac{9}{25}\right)-(4+4+2) \frac{d^{2} y}{d x^{2}}=0$ from which $\quad \frac{d^{2} y}{d x^{2}}=\frac{1}{125}$ at $(4,2)$.

This Task involves finding a formula for the curvature of a bent beam. When a horizontal beam is acted on by forces which bend it, then each small segment of the beam will be slightly curved and can be regarded as an arc of a circle. The radius R of that circle is called the radius of curvature of the beam at the point concerned. If the shape of the beam is described by an equation of the form $y=f(x)$ then there is a formula for the radius of curvature R which involves only the first and second derivatives $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

Find that equation as follows.
Start with the equation of a circle in the simple implicit form

$$
x^{2}+y^{2}=R^{2}
$$

and perform implicit differentiation twice. Now use the result of the first implicit differentiation to find a simple expression for the quantity $1+(d y / d x)^{2}$ in terms of R and y; this can then be used to simplify the result of the second differentiation, and will lead to a formula for $\frac{1}{R}$ (called the curvature) in terms of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

Your solution

Answer

Differentiating: $x^{2}+y^{2}=R^{2}$ gives:

$$
\begin{equation*}
2 x+2 y \frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

Differentiating again: $\quad 2+2\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d^{2} y}{d x^{2}}=0$
From (1)

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{x}{y} \quad \therefore \quad 1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{x^{2}}{y^{2}}=\frac{y^{2}+x^{2}}{y^{2}}=\left(\frac{R}{y}\right)^{2} \tag{3}
\end{equation*}
$$

So $1+\left(\frac{d y}{d x}\right)^{2}=\left(\frac{R}{y}\right)^{2}$.
Thus (2) becomes $\quad 2\left(\frac{R}{y}\right)^{2}+2 y\left(\frac{d^{2} y}{d x^{2}}\right)=0 \quad \therefore \quad \frac{d^{2} y}{d x^{2}}=-\frac{R^{2}}{y^{3}}=-\left(\frac{1}{R}\right)\left(\frac{R}{y}\right)^{3}$
so $\quad \frac{d^{2} y}{d x^{2}}=-\frac{1}{R}\left(\frac{R}{y}\right)^{3}$
Rearranging (4) to make $\frac{1}{R}$ the subject and substituting for $\left(\frac{R}{y}\right)$ from (3) gives the result:

$$
\frac{1}{R}=-\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}
$$

The equation usually found in textbooks omits the minus sign but the sign indicates whether the circle is above or below the curve, as you will see by sketching a few examples. When the gradient is small (as for a slightly deflected horizontal beam), i.e. $\frac{d y}{d x}$ is small, the denominator in the equation for $(1 / R)$ is close to 1 , and so the second derivative alone is often used to estimate the radius of curvature in the theory of bending beams.

