Integration by Parts

Introduction

Integration by Parts is a technique for integrating products of functions. In this Section you will learn to recognise when it is appropriate to use the technique and have the opportunity to practise using it for finding both definite and indefinite integrals.

- understand what is meant by definite and indefinite integrals

Prerequisites

Before starting this Section you should ...

- be able to use a table of integrals
- be able to differentiate and integrate a range of common functions
- decide when it is appropriate to use the method known as integration by parts

Learning Outcomes

On completion you should be able to ...

- apply the formula for integration by parts to definite and indefinite integrals
- perform integration by parts repeatedly if appropriate

1. Indefinite integration

The technique known as integration by parts is used to integrate a product of two functions, such as in these two examples:
(i) $\int \mathrm{e}^{2 x} \sin 3 x d x$
(ii) $\int_{0}^{1} x^{3} \mathrm{e}^{-2 x} d x$

Note that in the first example, the integrand is the product of the functions $\mathrm{e}^{2 x}$ and $\sin 3 x$, and in the second example the integrand is the product of the functions x^{3} and $\mathrm{e}^{-2 x}$. Note also that we can change the order of the terms in the product if we wish and write
(i) $\int(\sin 3 x) \mathrm{e}^{2 x} d x$
(ii) $\int_{0}^{1} \mathrm{e}^{-2 x} x^{3} d x$

What you must never do is integrate each term in the product separately and then multiply - the integral of a product is not the product of the separate integrals. However, it is often possible to find integrals involving products using the method of integration by parts - you can think of this as a product rule for integrals.
The integration by parts formula states:

Key Point 5
 Integration by Parts for Indefinite Integrals

For indefinite integrals, given functions $f(x)$ and $g(x)$:

$$
\int f \cdot g d x=f \cdot \int g d x-\int\left(\frac{d f}{d x} \cdot \int g d x\right) d x
$$

Alternatively, given functions u and v :

$$
\int u \frac{d v}{d x} d x=u \cdot v-\int v \frac{d u}{d x} d x
$$

Study the formula carefully and note the following observations. Firstly, to apply the formula we must be able to differentiate the function f to find $\frac{d f}{d x}$, and we must be able to integrate the function, g. Secondly the formula replaces one integral, the one on the left, with a different integral, that on the far right. The intention is that the latter, whilst it may look more complicated in the formula above, is simpler to evaluate. Consider the following Example:

Example 15

Find the integral of the product of x with $\sin x$; that is, find $\int x \sin x d x$.

Solution

Compare the required integral with the formula for integration by parts: we choose

$$
f=x \quad \text { and } \quad g=\sin x
$$

It follows that

$$
\frac{d f}{d x}=1 \quad \text { and } \quad \int g d x=\int \sin x d x=-\cos x
$$

(When integrating g there is no need to worry about a constant of integration. When you become confident with the method, you may like to think about why this is the case.)

Applying the formula we obtain

$$
\begin{aligned}
\int x \sin x d x & =f \cdot \int g d x-\int\left(\frac{d f}{d x} \cdot \int g d x\right) d x \\
& =x(-\cos x)-\int 1(-\cos x) d x \\
& =-x \cos x+\int \cos x d x=-x \cos x+\sin x+c
\end{aligned}
$$

Find $\int(5 x+1) \cos 2 x d x$.

Let $f=5 x+1$ and $g=\cos 2 x$. Now calculate $\frac{d f}{d x}$ and $\int g d x$:

Your solution

Answer

$\frac{d f}{d x}=5$ and $\int \cos 2 x d x=\frac{1}{2} \sin 2 x$.
Substitute these results into the formula for integration by parts and complete the Task:

Your solution

Answer

$(5 x+1)\left(\frac{1}{2} \sin 2 x\right)-\int 5\left(\frac{1}{2} \sin 2 x\right) d x=\frac{1}{2}(5 x+1) \sin 2 x+\frac{5}{4} \cos 2 x+c$
Sometimes it is necessary to apply the formula more than once, as the next Example shows.

Example 16

Find $\int 2 x^{2} \mathrm{e}^{-x} d x$

Solution

We let $f=2 x^{2}$ and $g=\mathrm{e}^{-x}$. Then $\frac{d f}{d x}=4 x$ and $\int g d x=-\mathrm{e}^{-x}$
Using the formula for integration by parts we find

$$
\int 2 x^{2} \mathrm{e}^{-x} d x=2 x^{2}\left(-\mathrm{e}^{-x}\right)-\int 4 x\left(-\mathrm{e}^{-x}\right) d x=-2 x^{2} \mathrm{e}^{-x}+\int 4 x \mathrm{e}^{-x} d x
$$

We now need to find $\int 4 x \mathrm{e}^{-x} d x$ using integration by parts again. We get

$$
\begin{aligned}
\int 4 x e^{-x} d x & =4 x\left(-\mathrm{e}^{-x}\right)-\int 4\left(-\mathrm{e}^{-x}\right) d x \\
& =-4 x \mathrm{e}^{-x}+\int 4 \mathrm{e}^{-x} d x=-4 x \mathrm{e}^{-x}-4 \mathrm{e}^{-x}
\end{aligned}
$$

Altogether we have

$$
\int 2 x^{2} \mathrm{e}^{-x} d x=-2 x^{2} \mathrm{e}^{-x}-4 x \mathrm{e}^{-x}-4 \mathrm{e}^{-x}+c=-2 \mathrm{e}^{-x}\left(x^{2}+2 x+2\right)+c
$$

Exercises

In some questions below it will be necessary to apply integration by parts more than once.

1. Find (a) $\int x \sin (2 x) d x$,
(b) $\int t \mathrm{e}^{3 t} d t$,
(c) $\int x \cos x d x$.
2. Find $\int(x+3) \sin x d x$.
3. By writing $\ln x$ as $1 \times \ln x$ find $\int \ln x d x$.
4. Find (a) $\int \tan ^{-1} x d x$,
(b) $\int-7 x \cos 3 x d x$,
(c) $\int 5 x^{2} \mathrm{e}^{3 x} d x$,
5. Find (a) $\int x \cos k x d x$, where k is a constant
(b) $\int z^{2} \cos k z d z$, where k is a constant.
6. Find (a) $\int t \mathrm{e}^{-s t} d t$ where s is a constant,
(b) Find $\int t^{2} \mathrm{e}^{-s t} d t$ where s is a constant.

Answers

1. (a) $\frac{1}{4} \sin 2 x-\frac{1}{2} x \cos 2 x+c$,
(b) $\mathrm{e}^{3 t}\left(\frac{1}{3} t-\frac{1}{9}\right)+c$,
(c) $\cos x+x \sin x+c$
2. $-(x+3) \cos x+\sin x+c$.
3. $x \ln x-x+c$.
4. (a) $x \tan ^{-1} x-\frac{1}{2} \ln \left(x^{2}+1\right)+c$, (b) $-\frac{7}{9} \cos 3 x-\frac{7}{3} x \sin 3 x+c, \quad$ (c) $\frac{5}{27} \mathrm{e}^{3 x}\left(9 x^{2}-6 x+2\right)+c$,
5. (a) $\frac{\cos k x}{k^{2}}+\frac{x \sin k x}{k}+c$,
(b) $\frac{2 z \cos k z}{k^{2}}+\frac{z^{2} \sin k z}{k}-\frac{2 \sin k z}{k^{3}}+c$.
6. (a) $\frac{-\mathrm{e}^{-s t}(s t+1)}{s^{2}}+c$,
(b) $\frac{-\mathrm{e}^{-s t}\left(s^{2} t^{2}+2 s t+2\right)}{s^{3}}+c$.

2. Definite integration

When dealing with definite integrals the relevant formula is as follows:

Key Point 6

Integration by Parts for Definite Integrals

For definite integrals, given functions $f(x)$ and $g(x)$:

$$
\int_{a}^{b} f \cdot g d x=\left[f \cdot \int g d x\right]_{a}^{b}-\int_{a}^{b}\left(\frac{d f}{d x} \cdot \int g d x\right) d x
$$

Alternatively, given functions u and $v: \quad \int_{a}^{b} u \frac{d v}{d x} d x=[u v]_{a}^{b}-\int_{a}^{b} v \frac{d u}{d x} d x$

Example 17

Find $\int_{0}^{2} x \mathrm{e}^{x} d x$.

Solution

We let $f=x$ and $g=\mathrm{e}^{x}$. Then $\frac{d f}{d x}=1$ and $\int g d x=\mathrm{e}^{x}$. Using integration by parts we obtain

$$
\int_{0}^{2} x \mathrm{e}^{x} d x=\left[x \mathrm{e}^{x}\right]_{0}^{2}-\int_{0}^{2} 1 . \mathrm{e}^{x} d x=2 \mathrm{e}^{2}-\left[\mathrm{e}^{x}\right]_{0}^{2}=2 \mathrm{e}^{2}-\left[\mathrm{e}^{2}-1\right]=\mathrm{e}^{2}+1 \quad \quad \text { (or } 8.389 \text { to } 3 \text { d.p.) }
$$

Sometimes it is necessary to apply the formula more than once as the next Example shows.

Example 18

Find the definite integral of $x^{2} \mathrm{e}^{x}$ from 0 to 2 ; that is, find $\int_{0}^{2} x^{2} \mathrm{e}^{x} d x$.

Solution

We let $f=x^{2}$ and $g=\mathrm{e}^{x}$. Then $\quad \frac{d f}{d x}=2 x \quad$ and $\quad \int g d x=\mathrm{e}^{x}$. Using integration by parts:

$$
\int_{0}^{2} x^{2} \mathrm{e}^{x} d x=\left[x^{2} \mathrm{e}^{x}\right]_{0}^{2}-\int_{0}^{2} 2 x \mathrm{e}^{x} d x=4 \mathrm{e}^{2}-2 \int_{0}^{2} x \mathrm{e}^{x} d x
$$

The remaining integral must be integrated by parts also but we have just done this in the example above. So $\quad \int_{0}^{2} x^{2} \mathrm{e}^{x} d x=4 \mathrm{e}^{2}-2\left[\mathrm{e}^{2}+1\right]=2 \mathrm{e}^{2}-2=12.778 \quad$ (3 d.p.)

What are your choices for f, g ?

Your solution

Answer

Take $f=4-3 x$ and $g=\sin x$.
Now complete the integral:

Your solution

$$
\int_{0}^{\pi / 4}(4-3 x) \sin x d x=
$$

Answer

$$
\begin{aligned}
\int_{0}^{\pi / 4}(4-3 x) \sin x d x & =[(4-3 x)(-\cos x)]_{0}^{\pi / 4}-3 \int_{0}^{\pi / 4} \cos x d x \\
& =[(4-3 x)(-\cos x)]_{0}^{\pi / 4}-3[\sin x]_{0}^{\pi / 4} \\
& =0.716 \text { to } 3 \text { d.p. }
\end{aligned}
$$

Exercises

1. Evaluate the following:
(a) $\int_{0}^{1} x \cos 2 x d x$,
(b) $\int_{0}^{\pi / 2} x \sin 2 x d x$,
(c) $\int_{-1}^{1} t \mathrm{e}^{2 t} d t$
2. Find $\int_{1}^{2}(x+2) \sin x d x$
3. Find $\int_{0}^{1}\left(x^{2}-3 x+1\right) \mathrm{e}^{x} d x$

Answers

1. (a) 0.1006 ,
(b) $\pi / 4=0.7854$,
(c) 1.9488 .
2. 3.3533 .
3. -0.5634 .
