
Maxima and Minima
�
�

�
�12.2

Introduction
In this Section we analyse curves in the ‘local neighbourhood’ of a stationary point and, from this
analysis, deduce necessary conditions satisfied by local maxima and local minima. Locating the max-
ima and minima of a function is an important task which arises often in applications of mathematics
to problems in engineering and science. It is a task which can often be carried out using only a
knowledge of the derivatives of the function concerned. The problem breaks into two parts

• finding the stationary points of the given functions

• distinguishing whether these stationary points are maxima, minima or, exceptionally, points of
inflection.

This Section ends with maximum and minimum problems from engineering contexts.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be able to obtain first and second derivatives
of simple functions

• be able to find the roots of simple equations'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• explain the difference between local and
global maxima and minima

• describe how a tangent line changes near a
maximum or a minimum

• locate the position of stationary points

• use knowledge of the second derivative to
distinguish between maxima and minima
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1. Maxima and minima
Consider the curve

y = f(x) a ≤ x ≤ b

shown in Figure 7:

x

y

f(a)

f(b)
a

b
x0 x1

Figure 7

By inspection we see that there is no y-value greater than that at x = a (i.e. f(a)) and there is no
value smaller than that at x = b (i.e. f(b)). However, the points on the curve at x0 and x1 merit
comment. It is clear that in the near neighbourhood of x0 all the y-values are greater than the
y-value at x0 and, similarly, in the near neighbourhood of x1 all the y-values are less than the y-value
at x1.

We say f(x) has a global maximum at x = a and a global minimum at x = b but also has a
local minimum at x = x0 and a local maximum at x = x1.

Our primary purpose in this Section is to see how we might locate the position of the local maxima
and the local minima for a smooth function f(x).

A stationary point on a curve is one at which the derivative has a zero value. In Figure 8 we have
sketched a curve with a maximum and a curve with a minimum.

x

y

x0
x

y

x0

Figure 8

By drawing tangent lines to these curves in the near neighbourhood of the local maximum and the
local minimum it is obvious that at these points the tangent line is parallel to the x-axis so that

df

dx

∣∣∣∣
x0

= 0
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Key Point 3

Points on the curve y = f(x) at which
df

dx
= 0 are called stationary points of the function.

However, be careful! A stationary point is not necessarily a local maximum or minimum of the
function but may be an exceptional point called a point of inflection, illustrated in Figure 9.

x

y

x0

Figure 9

Example 2
Sketch the curve y = (x− 2)2 + 2 and locate the stationary points on the curve.

Solution

Here f(x) = (x− 2)2 + 2 so
df

dx
= 2(x− 2).

At a stationary point
df

dx
= 0 so we have 2(x − 2) = 0 so x = 2. We conclude that this function

has just one stationary point located at x = 2 (where y = 2).

By sketching the curve y = f(x) it is clear that this stationary point is a local minimum.

x

y

2

2

Figure 10
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Task

Locate the position of the stationary points of f(x) = x3 − 1.5x2 − 6x + 10.

First find
df

dx
:

Your solution
df

dx
=

Answer
df

dx
= 3x2 − 3x− 6

Now locate the stationary points by solving
df

dx
= 0:

Your solution

Answer
3x2 − 3x − 6 = 3(x + 1)(x − 2) = 0 so x = −1 or x = 2. When x = −1, f(x) = 13.5 and
when x = 2, f(x) = 0, so the stationary points are (−1, 13.5) and (2, 0). We have, in the figure,
sketched the curve which confirms our deductions.

x

y

2−2.5

(−1, 13.5)
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Task

Sketch the curve y = cos 2x 0.1 ≤ x ≤ 3π

4
and on it locate the position

of the global maximum, global minimum and any local maxima or minima.

Your solution

x

y

0.1 π/4 π/2 3π/4

Answer

x

y global maximum

0.1 π/4 π/2 3π/4

local minimum
and global minimum

local maximum

2. Distinguishing between local maxima and minima
We might ask if it is possible to predict when a stationary point is a local maximum, a local minimum
or a point of inflection without the necessity of drawing the curve. To do this we highlight the general
characteristics of curves in the neighbourhood of local maxima and minima.

For example: at a local maximum (located at x0 say) Figure 11 describes the situation:

xx0

f(x) to the left of
the maximum

to the right of
the maximum

df

dx
> 0

df

dx
< 0

Figure 11

If we draw a graph of the derivative
df

dx
against x then, near a local maximum, it must take one

of two basic shapes described in Figure 12:
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xx0
xx0

α

or

(a) (b)

df

dx

df

dx

α = 180◦

Figure 12

In case (a)
d

dx

(
df

dx

) ∣∣∣∣
x0

≡ tan α < 0 whilst in case (b)
d

dx

(
df

dx

) ∣∣∣∣
x0

= 0

We reach the conclusion that at a stationary point which is a maximum the value of the second

derivative
d2f

dx2
is either negative or zero.

Near a local minimum the above graphs are inverted. Figure 13 shows a local minimum.

xx0

f(x)
to the left of

to the right

the minimum

of
the minimum

df

dx
> 0

df

dx
< 0

Figure 13

Figure 134 shows the two possible graphs of the derivative:

xx0
xx0

or

(a) (b)

β

df

dx

df

dx

Figure 14

Here, for case (a)
d

dx

(
df

dx

) ∣∣∣∣
x0

= tan β > 0 whilst in (b)
d

dx

(
df

dx

) ∣∣∣∣
x0

= 0.

In this case we conclude that at a stationary point which is a minimum the value of the second

derivative
d2f

dx2
is either positive or zero.
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For the third possibility for a stationary point - a point of inflection - the graph of f(x) against x

and of
df

dx
against x take one of two forms as shown in Figure 15.

xx0

xx0

f(x)

xx0

x
x0

f(x)

to the left of x0

to the right of x0

df

dx
> 0

df

dx
< 0

df

dx
> 0

to the left of x0

to the right of x0
df

dx
< 0

df

dx

df

dx

Figure 15

For either of these cases
d

dx

(
df

dx

) ∣∣∣∣
x0

= 0

The sketches and analysis of the shape of a curve y = f(x) in the near neighbourhood of stationary
points allow us to make the following important deduction:

Key Point 4

If x0 locates a stationary point of f(x), so that
df

dx

∣∣∣∣
x0

= 0, then the stationary point

is a local minimum if
d2f

dx2

∣∣∣∣
x0

> 0

is a local maximum if
d2f

dx2

∣∣∣∣
x0

< 0

is inconclusive if
d2f

dx2

∣∣∣∣
x0

= 0
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Example 3
Find the stationary points of the function f(x) = x3 − 6x.

Are these stationary points local maxima or local minima?

Solution

df

dx
= 3x2 − 6. At a stationary point

df

dx
= 0 so 3x2 − 6 = 0, implying x = ±

√
2.

Thus f(x) has stationary points at x =
√

2 and x = −
√

2. To decide if these are maxima or minima
we examine the value of the second derivative of f(x) at the stationary points.

d2f

dx2
= 6x so

d2f

dx2

∣∣∣∣
x=
√

2

= 6
√

2 > 0. Hence x =
√

2 locates a local minimum.

Similarly
d2f

dx2

∣∣∣∣
x=−

√
2

= −6
√

2 < 0. Hence x = −
√

2 locates a local maximum.

A sketch of the curve confirms this analysis:

x

f(x)

−
√

2

√
2

Figure 16

Task

For the function f(x) = cos 2x, 0.1 ≤ x ≤ 6, find the positions of any local
minima or maxima and distinguish between them.

Calculate the first derivative and locate stationary points:

Your solution
df

dx
=

Stationary points are located at:
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Answer
df

dx
= −2 sin 2x.

Hence stationary points are at values of x in the range specified for which sin 2x = 0 i.e. at 2x = π
or 2x = 2π or 2x = 3π (making sure x is within the range 0.1 ≤ x ≤ 6)

∴ Stationary points at x =
π

2
, x = π, x =

3π

2

Now calculate the second derivative:

Your solution
d2f

dx2
=

Answer
d2f

dx2
= −4 cos 2x

Finally: evaluate the second derivative at each stationary points and draw appropriate conclusions:

Your solution
d2f

dx2

∣∣∣∣
x=π

2

=

d2f

dx2

∣∣∣∣
x=π

=

d2f

dx2

∣∣∣∣
x= 3π

2

=

Answer
d2f

dx2

∣∣∣∣
x=π

2

= −4 cos π = 4 > 0 ∴ x =
π

2
locates a local minimum.

d2f

dx2

∣∣∣∣
x=π

= −4 cos 2π = −4 < 0 ∴ x = π locates a local maximum.

d2f

dx2

∣∣∣∣
x= 3π

2

= −4 cos 3π = 4 > 0 ∴ x =
3π

2
locates a local minimum.

x0.1π/4 π/2 3π/4
3π/2

6

f(x)
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Task

Determine the local maxima and/or minima of the function y = x4 − 1

3
x3

First obtain the positions of the stationary points:

Your solution

f(x) = x4 − 1

3
x3 df

dx
=

Thus
df

dx
= 0 when:

Answer
df

dx
= 4x3 − x2 = x2(4x− 1)

df

dx
= 0 when x = 0 or when x = 1/4

Now obtain the value of the second derivatives at the stationary points:

Your solution
d2f

dx2
= ∴

d2f

dx2

∣∣∣∣
x=0

=

d2f

dx2

∣∣∣∣
x=1/4

=

Answer
d2f

dx2
= 12x2 − 2x

d2f

dx2

∣∣∣∣
x=0

= 0, which is inconclusive.

d2f

dx2

∣∣∣∣
x=1/4

=
12

16
− 1

2
=

1

4
> 0 Hence x =

1

4
locates a local minimum.

Using this analysis we cannot decide whether the stationary point at x = 0 is a local maximum,

minimum or a point of inflection. However, just to the left of x = 0 the value of
df

dx
(which equals

x2(4x − 1)) is negative whilst just to the right of x = 0 the value of
df

dx
is negative again. Hence

the stationary point at x = 0 is a point of inflection. This is confirmed by sketching the curve as
in Figure 17.

x

f(x)

1/4

− 0.0013

Figure 17
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Task

A materials store is to be constructed next to a 3 metre high stone wall (shown
as OA in the cross section in the diagram). The roof (AB) and front (BC) are
to be constructed from corrugated metal sheeting. Only 6 metre length sheets are
available. Each of them is to be cut into two parts such that one part is used for
the roof and the other is used for the front. Find the dimensions x, y of the store
that result in the maximum cross-sectional area. Hence determine the maximum
cross-sectional area.

xO

B

A

Stone
3 m Wall

y

C

Your solution
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Answer
Note that the store has the shape of a trapezium. So the cross-sectional area (A) of the store is
given by the formula: Area = average length of parallel sides × distance between parallel sides:

A =
1

2
(y + 3)x (1)

The lengths x and y are related through the fact that AB + BC = 6, where BC = y and
AB =

√
x2 + (3− y)2. Hence

√
x2 + (3− y)2 + y = 6. This equation can be rearranged in the

following way:√
x2 + (3− y)2 = 6− y ⇔ x2 + (3− y)2 = (6− y)2 i.e. x2 + 9− 6y + y2 = 36− 12y + y2

which implies that x2 + 6y = 27 (2)

It is necessary to eliminate either x or y from (1) and (2) to obtain an equation in a single variable.
Using y instead of x as the variable will avoid having square roots appearing in the expression for
the cross-sectional area. Hence from Equation (2)

y =
27− x2

6
(3)

Substituting for y from Equation (3) into Equation (1) gives

A =
1

2

(
27− x2

6
+ 3

)
x =

1

2

(
27− x2 + 18

6

)
x =

1

12

(
45x− x3

)
(4)

To find turning points, we evaluate
dA

dx
from Equation (4) to get

dA

dx
=

1

12
(45− 3x2) (5)

Solving the equation
dA

dx
= 0 gives

1

12
(45− 3x2) = 0 ⇒ 45− 3x2 = 0

Hence x = ±
√

15 = ± 3.8730. Only x > 0 is of interest, so

x =
√

15 = 3.87306 (6)

gives the required turning point.

Check: Differentiating Equation (5) and using the positive x solution (6) gives

d2A

dx2
= −6x

12
= −x

2
= −3.8730

2
< 0

Since the second derivative is negative then the cross-sectional area is a maximum. This is the only
turning point identified for A > 0 and it is identified as a maximum. To find the corresponding

value of y, substitute x = 3.8730 into Equation (3) to get y =
27− 3.87302

6
= 2.0000

So the values of x and y that yield the maximum cross-sectional area are 3.8730 m and 2.00000
m respectively. To find the maximum cross-sectional area, substitute for x = 3.8730 into Equation
(5) to get

A =
1

2
(45× 3.8730− 3.87303) = 9.6825

So the maximum cross-sectional area of the store is 9.68 m2 to 2 d.p.

HELM (2008):
Section 12.2: Maxima and Minima

25



Task

Equivalent resistance in an electrical circuit

Current distributes itself in the wires of an electrical circuit so as to minimise the total power
consumption i.e. the rate at which heat is produced. The power (p) dissipated in an electrical circuit
is given by the product of voltage (v) and current (i) flowing in the circuit, i.e. p = vi. The voltage
across a resistor is the product of current and resistance (r). This means that the power dissipated
in a resistor is given by p = i2r.

Suppose that an electrical circuit contains three resistors r1, r2, r3 and i1 represents the current
flowing through both r1 and r2, and that (i − i1) represents the current flowing through r3 (see
diagram):

R1 R2

R3
i1

i

i−i1

(a) Write down an expression for the power dissipated in the circuit:

Your solution

Answer

p = i21r1 + i21r2 + (i− i1)
2r3

(b) Show that the power dissipated is a minimum when i1 =
r3

r1 + r2 + r3

i :

Your solution
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Answer
Differentiate result (a) with respect to i1:

dp

di1
= 2i1r1 + 2i1r2 + 2(i− i1)(−1)r3

= 2i1(r1 + r2 + r3)− 2ir3

This is zero when

i1 =
r3

r1 + r2 + r3

i.

To check if this represents a minimum, differentiate again:

d2p

di21
= 2(r1 + r2 + r3)

This is positive, so the previous result represents a minimum.

(c) If R is the equivalent resistance of the circuit, i.e. of r1, r2 and r3, for minimum power dissipation
and the corresponding voltage V across the circuit is given by V = iR = i1(r1 + r2), show that

R =
(r1 + r2)r3

r1 + r2 + r3

.

Your solution

Answer
Substituting for i1 in iR = i1(r1 + r2) gives

iR =
r3(r1 + r2)

r1 + r2 + r3

i.

So

R =
(r1 + r2)r3

r1 + r2 + r3

.

Note In this problem R1 and R2 could be replaced by a single resistor. However, treating them as
separate allows the possibility of considering more general situations (variable resistors or temperature
dependent resistors).
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Engineering Example 1

Water wheel efficiency

Introduction

A water wheel is constructed with symmetrical curved vanes of angle of curvature θ. Assuming that
friction can be taken as negligible, the efficiency, η, i.e. the ratio of output power to input power, is
calculated as

η =
2(V − v)(1 + cos θ)v

V 2

where V is the velocity of the jet of water as it strikes the vane, v is the velocity of the vane in the
direction of the jet and θ is constant. Find the ratio, v/V , which gives maximum efficiency and find
the maximum efficiency.

Mathematical statement of the problem

We need to express the efficiency in terms of a single variable so that we can find the maximum
value.

Efficiency =
2(V − v)(1 + cos θ)v

V 2
= 2

(
1− v

V

) v

V
(1 + cos θ).

Let η = Efficiency and x =
v

V
then η = 2x(1− x)(1 + cos θ).

We must find the value of x which maximises η and we must find the maximum value of η. To do

this we differentiate η with respect to x and solve
dη

dx
= 0 in order to find the stationary points.

Mathematical analysis

Now η = 2x(1− x)(1 + cos θ) = (2x− 2x2)(1 + cos θ)

So
dη

dx
= (2− 4x)(1 + cos θ)

Now
dη

dx
= 0 ⇒ 2− 4x = 0 ⇒ x =

1

2
and the value of η when x =

1

2
is

η = 2

(
1

2

) (
1− 1

2

)
(1 + cos θ) =

1

2
(1 + cos θ).

This is clearly a maximum not a minimum, but to check we calculate
d2η

dx2
= −4(1 + cos θ) which is

negative which provides confirmation.

Interpretation

Maximum efficiency occurs when
v

V
=

1

2
and the maximum efficiency is given by

η =
1

2
(1 + cos θ).
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Engineering Example 2

Refraction

The problem

A light ray is travelling in a medium (A) at speed cA. The ray encounters an interface with a medium
(B) where the velocity of light is cB . Between two fixed points P in media A and Q in media B,
find the path through the interface point O that minimizes the time of light travel (see Figure 18).
Express the result in terms of the angles of incidence and refraction at the interface and the velocities
of light in the two media.

a

d

θA

O

x
b

θB

Q

P

Medium (A)

Medium (B)

Figure 18: Geometry of light rays at an interface

The solution

The light ray path is shown as POQ in the above figure where O is a point with variable horizontal
position x. The points P and Q are fixed and their positions are determined by the constants a, b, d
indicated in the figure. The total path length can be decomposed as PO + OQ so the total time of
travel T (x) is given by

T (x) = PO/cA + OQ/cB. (1)

Expressing the distances PO and OQ in terms of the fixed coordinates a, b, d, and in terms of the
unknown position x, Equation (1) becomes

T (x) =

√
a2 + x2

cA

+

√
b2 + (d− x)2

cB

(2)

It is assumed that the minimum of the travel time is given by the stationary point of T (x) such that

dT

dx
= 0. (3)

Using the chain rule in ( 11.5) to compute (3) given (2) leads to

1

2

2x

cA

√
a2 + x2

+
1

2

2x− 2d

cB

√
b2 + (d− x)2

= 0.

After simplification and rearrangement

x

cA

√
a2 + x2

=
d− x

cB

√
b2 + (d− x)2

.
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Using the definitions sin θA =
x√

a2 + x2
and sin θB =

d− x√
b2 + (d− x)2

this can be written as

sin θA

cA

=
sin θB

cB

. (4)

Note that θA andθB are the incidence angles measured from the interface normal as shown in the
figure. Equation (4) can be expressed as

sin θA

sin θB

=
cA

cB

which is the well-known law of refraction for geometrical optics and applies to many other kinds

of waves. The ratio
cA

cB

is a constant called the refractive index of medium (B) with respect to

medium (A).
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Engineering Example 3

Fluid power transmission

Introduction

Power transmitted through fluid-filled pipes is the basis of hydraulic braking systems and other
hydraulic control systems. Suppose that power associated with a piston motion at one end of a
pipeline is transmitted by a fluid of density ρ moving with positive velocity V along a cylindrical
pipeline of constant cross-sectional area A. Assuming that the loss of power is mainly attributable to
friction and that the friction coefficient f can be taken to be a constant, then the power transmitted,
P is given by

P = ρgA(hV − cV 3),

where g is the acceleration due to gravity and h is the head which is the height of the fluid above

some reference level (= the potential energy per unit weight of the fluid). The constant c =
4fl

2gd
where l is the length of the pipe and d is the diameter of the pipe. The power transmission efficiency
is the ratio of power output to power input.

Problem in words

Assuming that the head of the fluid, h, is a constant find the value of the fluid velocity, V , which
gives a maximum value for the output power P . Given that the input power is Pi = ρgAV h, find
the maximum power transmission efficiency obtainable.

Mathematical statement of the problem

We are given that P = ρgA(hV −cV 3) and we want to find its maximum value and hence maximum
efficiency.

To find stationary points for P we solve
dP

dV
= 0.

To classify the stationary points we can differentiate again to find the value of
d2P

dV 2
at each stationary

point and if this is negative then we have found a local maximum point. The maximum efficiency
is given by the ratio P/Pi at this value of V and where Pi = ρgAV h. Finally we should check that
this is the only maximum in the range of P that is of interest.

Mathematical analysis

P = ρgA(hV − cV 3)

dP

dV
= ρgA(h− 3cV 2)

dP

dV
= 0 gives ρgA(h− 3cV 2) = 0

⇒ V 2 =
h

3c
⇒ V = ±

√
h

3c
and as V is positive ⇒ V =

√
h

3c
.
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To show this is a maximum we differentiate
dP

dV
again giving

d2P

dV 2
= ρgA(−6cV ). Clearly this is

negative, or zero if V = 0. Thus V =

√
h

3c
gives a local maximum value for P .

We note that P = 0 when E = ρgA(hV − cV 3) = 0, i.e. when hV − cV 3 = 0, so V = 0 or

V =

√
h

C
. So the maximum at V =

√
h

3C
is the only max in this range between 0 and V =

√
h

C
.

The efficiency E, is given by (input power/output power), so here

E =
ρgA(hV − cV 3)

ρgAV h
= 1− cV 2

h

At V =

√
h

3c
then V 2 =

h

3c
and therefore E = 1−

c
h

3c
c

= 1− 1

3
=

2

3
or 662

3
%.

Interpretation

Maximum power transmitted through the fluid when the velocity V =

√
h

3c
and the maximum

efficiency is 662
3
%. Note that this result is independent of the friction and the maximum efficiency

is independent of the velocity and (static) pressure in the pipe.

420 3

2.215

1.81 h = 3

P (V )

h = 2

1

4

2

3

1

m

m

Figure 19: Graphs of transmitted power as a function of fluid velocity

for two values of the head

Figure 19 shows the maxima in the power transmission for two different values of the head in an oil
filled pipe (oil density 1100 kg m−3) of inner diameter 0.01 m and coefficient of friction 0.01 and
pipe length 1 m.
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Engineering Example 4

Crank used to drive a piston

Introduction

A crank is used to drive a piston as in Figure 20.

ap

vp

vc

! r

θ

C

ac = ω2r

Figure 20: Crank used to drive a piston

Problem

The angular velocity of the crankshaft is the rate of change of the angle θ, ω = dθ/dt. The piston
moves horizontally with velocity vp and acceleration ap; r is the length of the crank and l is the length
of the connecting rod. The crankpin performs circular motion with a velocity of vc and centripetal
acceleration of ω2r. The acceleration ap of the piston varies with θ and is related by

ap = ω2r

(
cos θ +

r cos 2θ

l

)
Find the maximum and minimum values of the acceleration ap when r = 150 mm and l = 375 mm.

Mathematical statement of the problem

We need to find the stationary values of ap = ω2r

(
cos θ +

r cos 2θ

l

)
when r = 150 mm and l = 375

mm. We do this by solving
dap

dθ
= 0 and then analysing the stationary points to decide whether they

are a maximum, minimum or point of inflexion.

Mathematical analysis.

ap = ω2r

(
cos θ +

r cos 2θ

l

)
so

dap

dθ
= ω2r

(
− sin θ − 2r sin 2θ

l

)
.

To find the maximum and minimum acceleration we need to solve

dap

dθ
= 0 ⇔ ω2r

(
− sin θ − 2r sin 2θ

l

)
= 0.

sin θ +
2r

l
sin 2θ = 0 ⇔ sin θ +

4r

l
sin θ cos θ = 0
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⇔ sin θ

(
1 +

4r

l
cos θ

)
= 0

⇔ sin θ = 0 or cos θ = − l

4r
and as r = 150 mm and l = 375 mm

⇔ sin θ = 0 or cos θ = −5

8

CASE 1: sinsinsin θθθ === 000

If sin θ = 0 then θ = 0 or θ = π. If θ = 0 then cos θ = cos 2θ = 1

so ap = ω2r

(
cos θ +

r cos 2θ

l

)
= ω2r

(
1 +

r

l

)
= ω2r

(
1 +

2

5

)
=

7

5
ω2r

If θ = π then cos θ = −1, cos 2θ = 1 so

ap = ω2r

(
cos θ +

r cos 2θ

l

)
= ω2r

(
−1 +

r

l

)
= ω2r

(
−1 +

2

5

)
= −3

5
ω2r

In order to classify the stationary points, we differentiate
dap

dθ
with respect to θ to find the second

derivative:

d2ap

dθ2
= ω2r

(
− cos θ − 4r cos 2θ

l

)
= −ω2r

(
cos θ +

4r cos 2θ

l

)
At θ = 0 we get

d2ap

dθ2
= −ω2r

(
1 +

4r

l

)
which is negative.

So θ = 0 gives a maximum value and ap =
7

5
ω2r is the value at the maximum.

At θ = π we get
d2ap

dθ2
= −ω2r

(
−1 +

4

l

)
= −ω2r

(
3

5

)
which is negative.

So θ = π gives a maximum value and ap = −3

5
ω2r

CASE 2: coscoscos θθθ ===−−−555

888

If cos θ = −5

8
then cos 2θ = 2 cos2 θ − 1 = 2

(
5

8

)2

− 1 so cos 2θ = − 7

32
.

ap = ω2r

(
cos θ +

r cos 2θ

l

)
= ω2r

(
−5

8
+− 7

32
× 2

5

)
=

57

80
ω2r.

At cos θ = −5

8
we get

d2ap

dθ2
= ω2r

(
− cos θ − 4r cos 2θ

l

)
= ω2r

(
5

8
+

4r

l

7

32

)
which is positive.

So cos θ = −5

8
gives a minimum value and ap = −57

80
ω2r

Thus the values of ap at the stationary points are:-

7

5
ω2r (maximum), −3

5
ω2r (maximum) and −57

80
ω2r (minimum).
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So the overall maximum value is 1.4ω2r = 0.21ω2 and the minimum value is
−0.7125ω2r = −0.106875ω2 where we have substituted r = 150 mm (= 0.15 m) and l = 375 mm
(= 0.375 m).

Interpretation

The maximum acceleration occurs when θ = 0 and ap = 0.21ω2.

The minimum acceleration occurs when cos θ = −5

8
and ap = −0.106875ω2.

Exercises

1. Locate the stationary points of the following functions and distinguish among them as maxima,
minima and points of inflection.

(a) f(x) = x− ln |x|. [Remember
d

dx
(ln |x|) =

1

x
]

(b) f(x) = x3

(c) f(x) =
(x− 1)

(x + 1)(x− 2)
− 1 < x < 2

2. A perturbation in the temperature of a stream leaving a chemical reactor follows a decaying
sinusoidal variation, according to

T (t) = 5exp(−at) sin(ωt)

where a and ω are positive constants.

(a) Sketch the variation of temperature with time.

(b) By examining the behaviour of
dT

dt
, show that the maximum temperatures occur at times

of
(
tan−1(

ω

a
) + 2πn

)
/ω.
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Answers

1. (a)
df

dx
= 1− 1

x
= 0 when x = 1

d2f

dx2
=

1

x2

d2f

dx2

∣∣∣∣
x=1

= 1 > 0

∴ x = 1, y = 1 locates a local minimum.

x

f(x)

1

(b)
df

dx
= 3x2 = 0 when x = 0

d2f

dx2
= 6x = 0 when x = 0

However,
df

dx
> 0 on either side of x = 0 so (0, 0) is a point of inflection.

x

f(x)

(c)
df

dx
=

(x + 1)(x− 2)− (x− 1)(2x− 1)

(x + 1)(x− 2)

This is zero when (x + 1)(x− 2)− (x− 1)(2x− 1) = 0 i.e. x2 − 2x + 3 = 0

However, this equation has no real roots (since b2 < 4ac) and so f(x) has no stationary
points. The graph of this function confirms this:

x

f(x)

−1 1 2

Nevertheless f(x) does have a point of inflection at x = 1, y = 0 as the graph shows,

although at that point
dy

dx
6= 0.
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Answer

2. (a)

T

t

(b)
dT

dt
= 0 implies tan ωt =

ω

a
, so tan ωt > 0 and

ωt = tan−1
(ω

a

)
+ kπ, k integer

Examination of
d2T

dt2
reveals that only even values of k give

d2T

dt2
< 0 for a maximum so

setting k = 2n gives the required answer.
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