
Multiple Integrals
over Non-rectangular
Regions
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Introduction
In the previous Section we saw how to evaluate double integrals over simple rectangular regions. We
now see how to extend this to non-rectangular regions.

In this Section we introduce functions as the limits of integration, these functions define the region
over which the integration is performed. These regions can be non-rectangular. Extra care now must
be taken when changing the order of integration. Producing a sketch of the region is often very
helpful.
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Prerequisites
Before starting this Section you should . . .

• have a thorough understanding of the various
techniques of integration

• be familiar with the concept of a function of
two variables

• have completed Section 27.1

• be able to sketch a function in the plane�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• evaluate double integrals over
non-rectangular regions

20 HELM (2008):
Workbook 27: Multiple Integration



®

1. Functions as limits of integration
In Section 27.1 double integrals of the form

I =

∫ x=b

x=a

∫ y=d

y=c

f (x, y) dydx

were considered. They represent an integral over a rectangular region in the xy plane. If the limits
of integration of the inner integral are replaced with functions G1, G2,

I =

∫ x=b

x=a

∫ G2(x)

G1(x)

f (x, y) dydx

then the region described will not, in general, be a rectangle. The region will be a shape bounded
by the curves (or lines) which these functions G1 and G2 describe.
As was indicated in 27.1

I =

∫ x=b

x=a

∫ G2(x)

G1(x)

f(x, y)dy dx

can be interpreted as the volume lying above the region in the xy plane defined by G1(x) and G2(x),
bounded above by the surface z = f(x, y). Not all double integrals are interpreted as volumes but
this is often the case. If z = f(x, y) < 0 anywhere in the relevant region, then the double integral
no longer represents a volume.

Key Point 4

Double Integral Over General Region

I =

∫ x=b

x=a

∫ G2(x)

G1(x)

f (x, y) dydx

1. The functions G1, G2 which are the limits for the inner integral are functions of the variable
of the outer integral. This must be the case for the integral to make sense.

2. The limits of the outer integral are constant.

3. Integration over rectangular regions can be thought of as the special case where G1 and G2

are constant functions.
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Example 8
Evaluate the integral I =

∫ 1

x=0

∫ 1−x

y=0

2xy dydx

Solution

x

y

f(x, y)

y = 1 − x

1 x

y

1

Figure 10 Figure 11

Projecting the relevant part of the surface (Figure 10) down to the xy plane produces the triangle
shown in Figure 11. The extremes that x takes are x = 0 and x = 1 and so these are the limits
on the outer integral. For any value of x, the variable y varies between y = 0 (at the bottom) and
y = 1 − x (at the top). Thus if the volume, shown in the diagram, under the function f(x, y),
bounded by this triangle is required then the following integral is to be calculated.∫ 1

x=0

∫ 1−x

y=0

f (x, y) dydx

Once the correct limits have been determined, the integration is carried out in exactly the same
manner as in Section 27.1

First consider the inner integral g(x) =

∫ 1−x

y=0

2xy dy

Integrating 2xy with respect to y gives xy2 + C so g(x) =
[

xy2
]1−x

y=0
= x(1− x)2

Note that, as is required, this is a function of x, the variable of the outer integral. Now the outer
integral is

I =

∫ 1

x=0

x(1− x)2 dx

=

∫ 1

x=0

(
x3 − 2x2 + x

)
dx =

[
x4

4
− 2x3

3
+

x2

2

]1

x=0

=
1

4
− 2

3
+

1

2
=

1

12

Regions do not have to be bounded only by straight lines. Also the integrals may involve other tools
of integration, such as substitution or integration by parts. Drawing a sketch of the limit functions
in the plane and shading the region is a valuable tools when evaluating such integrals.
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Example 9
Evaluate the volume under the surface given by z = f(x, y) = 2x sin(y), over
the region bounded above by the curve y = x2 and below by the line y = 0, for
0 ≤ x ≤ 1.

1 x

y

1

y = x2

Figure 12

Solution

First sketch the curve y = x2 and identify the region. This is the shaded region in Figure 12. The
required integral is

I =

∫ 1

x=0

∫ x2

y=0

2x sin(y) dydx

=

∫ 1

x=0

[
− 2x cos(y)

]x2

y=0

dx

=

∫ 1

x=0

(
−2x cos

(
x2

)
+ 2x

)
dx

=

∫ 1

x=0

(
1− cos

(
x2

))
2x dx

Making the substitution u = x2 so du = 2x dx and noting that the limits x = 0, 1 map to u = 0, 1,
gives

I =

∫ 1

u=0

(1− cos (u)) du

=
[

u− sin(u)
]1

u=0

= 1− sin(1)

≈ 0.1585

HELM (2008):
Section 27.2: Multiple Integrals over Non-rectangular Regions

23



Example 10
Evaluate the volume under the surface given by z = f(x, y) = x2 + 1

2
y, over the

region bounded by the curves y = 2x and y = x2.

x

y

y = x2

y = 2x

Figure 13

Solution

The sketch of the region is shown in Figure 13. The required integral is

I =

∫ b

x=a

∫ 2x

y=x2

(
x2 +

1

2
y

)
dydx

To determine the limits for the integration with respect to x, the points where the curves intersect
are required. These points are the solutions of the equation 2x = x2, so the required limits are
x = 0 and x = 2. Then the volume is given by

I =

∫ 2

x=0

∫ 2x

y=x2

(
x2 +

1

2
y

)
dydx

=

∫ 2

x=0

[
x2y +

1

4
y2

]2x

y=x2

dx

=

∫ 2

x=0

(
x2 + 2x3 − 5

4
x4

)
dx

=

[
x3

3
+

x4

2
− x5

4

]2

x=0

=
8

3
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Example 11
(a) Evaluate the volume under z = f(x, y) = 5x2y, over the half of the

unit circle that lies above the x-axis. (Figure 14).

x

y

1−1

Figure 14

(b) Repeat (a) for z = f(x, y) = 1.

Solution

(a) This region is bounded by the circle y2 + x2 = 1 and the line y = 0. Since only positive
values of y are required, the equation of the circle can be written y =

√
1− x2. Then

the required volume is given by

I =

∫ 1

x=−1

∫ √
1−x2

y=0

(
5x2y

)
dydx =

∫ 1

x=−1

[
5

2
x2y2

]√1−x2

y=0

dx

=

∫ 1

x=−1

5

2
x2(1− x2) dx =

5

2

[
x3

3
− x5

5

]1

−1

=
2

3

(b)

I =

∫ 1

x=−1

∫ √
1−x2

y=0

1 dydx =

∫ 1

x=−1

[
y

]√1−x2

y=0

dx

=

∫ 1

x=−1

√
1− x2 dx (which by substituting x = sin θ) =

π

2

Note that by putting f(x, y) = 1 we have found the volume of a semi-circular lamina of uniform
height 1. This result is numerically the same as the area of the region in Figure 14. (This is a
general result.)
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Task

Evaluate the following double integral over a non-rectangular region.∫ 1

x=0

∫ 1

y=x

(
x2 + y2

)
dydx

(a) First sketch the region of the xy-plane determined by the limits:

Your solution

Answer

y = 1

x = 1
x

y

y = 1

x = 1
x

y

(b) Now evaluate the inner triangle:

Your solution

Answer
In the triangle, x varies between x = 0 and x = 1. For every value of x, y varies between y = x
and y = 1.
The inner integral is given by

Inner Integral =

∫ 1

y=x

(
x2 + y2

)
dy =

[
x2y +

1

3
y3

]1

x

= x2 × 1 +
1

3
× 13 − (x2 × x +

1

3
x3)

= x2 +
1

3
− 4

3
x3
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(c) Finally evaluate the outer integral:

Your solution

Answer
The inner integral is placed in the outer integral to give

Outer Integral =

∫ 1

0

(
x2 − 4

3
x3 +

1

3

)
dx =

[
1

3
x3 − 1

3
x4 +

1

3
x

]1

0

= (
1

3
− 1

3
+

1

3
)− 0

=
1

3

Note that the above Task is simply one of integrating a function over a region - there is no reference
to a volume here. Another like this now follows.

Task

Integrate the function z = x2y over the trapezium with vertices at (0, 0), (1, 1),
(1, 2) and (0, 4).

Your solution

HELM (2008):
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Answer
The integration takes place over the trapezium shown (left)

(0, 4)

(1, 2)

(1, 1)

(0, 0) x

y

x

y

Considering variable x on the outer integral and variable y on the inner integral, the trapezium has
an extent in x of x = 0 to x = 1. So, the limits on the outer integral (limits on x) are x = 0 and
x = 1.
For each value of x, y varies from y = x (line joining (0, 0) to (1, 1)) to y = 4 − 2x (line joining
(1, 2) and (0, 4)). So the limits on the inner integral (limits on y) are y = x to y = 4− 2x.
The double integral thus becomes ∫ 1

x=0

∫ 4−2x

y=x

x2y dy dx

The inner integral is∫ 4−2x

y=x

x2y dy =

[
x2y2

2

]4−2x

y=x

= x2 (4− 2x)2

2
− x2x2

2
= 8x2 − 8x3 +

3

2
x4

Putting this into the outer integral gives∫ 1

x=0

(8x2 − 8x3 +
3

2
x4) dx =

[
8

3
x3 − 2x4 +

3

10
x5

]1

0

= (
8

3
− 2 +

3

10
)− 0 =

29

30

Exercises

Evaluate the following integrals

1.

∫ 1

x=0

∫ x2+2

y=3x

xy dydx

2.

∫ 2

x=1

∫ 3x

y=x2+2

xy dydx [Hint: Note how the same curves can define different regions.]

3.

∫ 2

x=1

∫ x2

y=1

x

y
dydx, [Hint: use integration by parts for the outer integral.]
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Answers

1.
11

24

2.
9

8

3. 4 ln 2− 3

2
≈ 1.27

Splitting the region of integration
Sometimes it is difficult or impossible to represent the region of integration by means of consistent
limits on x and y. Instead, it is possible to divide the region of integration into two (or more) sub-
regions, carry out a multiple integral on each region and add the integrals together. For example,
suppose it is necessary to integrate the function g(x, y) over the triangle defined by the three points
(0, 0), (1, 4) and (2,−2).

x

y

A(0, 0)

B(1, 4)

C(2,−2)
D(1,−1)

Figure 15

It is not possible to represent the triangle ABC by means of limits on an inner integral and an outer
integral. However, it can be split into the triangle ABD and the triangle BCD. D is chosen to be
the point on AC directly beneath B, that is, line BD is parallel to the y-axis so that x is constant
along it. Note that the sides of triangle ABC are defined by sections of the lines y = 4x, y = −x
and y = −6x + 10.
In triangle ABD, the variable x takes values between x = 0 and x = 1. For each value of x, y can
take values between y = −x (bottom) and y = 4x. Hence, the integral of the function g(x, y) over
triangle ABD is

I1 =

∫ x=1

x=0

∫ y=4x

y=−x

g (x, y) dydx

Similarly, the integral of g(x, y) over triangle BCD is

I2 =

∫ x=2

x=1

∫ y=−6x+10

y=−x

g (x, y) dydx

and the integral over the full triangle is

I = I1 + I2 =

∫ x=1

x=0

∫ y=4x

y=−x

g (x, y) dydx +

∫ x=2

x=1

∫ y=−6x+10

y=−x

g (x, y) dydx

HELM (2008):
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Example 12
Integrate the function g(x, y) = xy over the triangle ABC.

Solution

Over triangle ABD, the integral is

I1 =

∫ x=1

x=0

∫ y=4x

y=−x

xy dydx

=

∫ x=1

x=0

[
1

2
xy2

]y=4x

y=−x

dx =

∫ x=1

x=0

[
8x3 − 1

2
x3

]
dx

=

∫ x=1

x=0

15

2
x3 dx =

[
15

8
x4

]1

0

=
15

8
− 0 =

15

8

Over triangle BCD, the integral is

I2 =

∫ x=2

x=1

∫ y=−6x+10

y=−x

xy dydx

=

∫ x=2

x=1

[
1

2
xy2

]y=−6x+10

y=−x

dx =

∫ x=2

x=1

[
1

2
x(−6x + 10)2 − 1

2
x(−x)2

]
dx

=

∫ x=2

x=1

1

2

[
36x3 − 120x2 + 100x− x3

]
dx =

1

2

∫ x=2

x=1

[
35x3 − 120x2 + 100x

]
dx

=
1

2

[
35

4
x4 − 40x3 + 50x2

]2

1

= 10− 75

8
=

5

8

So the total integral is I1 + I2 =
15

8
+

5

8
=

5

2

2. Order of integration
All of the preceding Examples and Tasks have been integrals of the form

I =

∫ x=b

x=a

∫ G2(x)

G1(x)

f (x, y) dydx

These integrals represent taking vertical slices through the volume that are parallel to the yz-plane.
That is, vertically through the xy-plane.

Just as for integration over rectangular regions, the order of integration can be changed and the
region can be sliced parallel to the xz-plane. If the inner integral is taken with respect to x then an
integral of the following form is obtained:

I =

∫ y=d

y=c

∫ H2(y)

H1(y)

f (x, y) dxdy
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Key Point 5

Changing Order of Integration

1. The integrand f(x, y) is not altered by changing the order of integration.

2. The limits will, in general, be different.

Example 13
The following integral was evaluated in Example 9.

I =

∫ 1

x=0

∫ x2

y=0

2x sin(y) dydx = 1− sin(1)

Change the order of integration and confirm that the new integral gives the same
result.

1 x

y

1

y = x2

Figure 16

Solution

The integral is taken over the region which is bounded by the curve y = x2. Expressed as a function
of y this curve is x =

√
y. Now consider this curve as bounding the region from the left, then the

line x = 1 bounds the region to the right. These then are the limit functions for the inner integral
H1(y) =

√
y and H2(y) = 1. Then the limits for the outer integral are c = 0 ≤ y ≤ 1 = d. The

following integral is obtained

I =

∫ 1

y=0

∫ 1

x=
√

y

2x sin(y) dxdy =

∫ 1

y=0

[
x2 sin(y)

]x=1

x=
√

y

dy =

∫ 1

y=0

(1− y) sin(y)) dy

=

[
− (1− y) cos(y)

]1

y=0

−
∫ 1

y=0

cos(y) dy, using integration by parts

= 1−
[

sin(y)

]1

y=0

= 1− sin(1)
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Task

The double integral I =

∫ 1

0

∫ 1

x

ey2

dydx involves an inner integral which is

impossible to integrate. Show that if the order of integration is reversed, the

integral can be expressed as I =

∫ 1

0

∫ y

0

ey2

dxdy. Hence evaluate the integral I.

Your solution

Answer
The following diagram shows the changing description of the boundary as the order of integration
is changed.

changing order

x = 0

y = 0

y = 1

x = yx = 0

y = x

y = 1

x = 1
x

y

x

y

I =

∫ 1

0

∫ 1

x

ey2

dydx =

∫ 1

0

∫ y

0

ey2

dxdy =

∫ 1

0

[
xey2

]y

0

dy

=

∫ 1

0

yey2

dy =

[
1

2
ey2

]1

0

=
1

2
(e− 1)
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3. Evaluating surface integrals using polar coordinates
Areas with circular boundaries often lead to double integrals with awkward limits, and these integrals
can be difficult to evaluate. In such cases it is easier to work with polar (r, θ) rather than Cartesian
(x, y) coordinates.

Polar coordinates

x

y

θ

r

O

P

Figure 17

The polar coordinates of the point P are the distance r from P to the origin O and the angle θ that
the line OP makes with the positive x axis. The following are used to transform between polar and
rectangular coordinates.

1. Given (x, y), (r, θ) are found using r =
√

x2 + y2 and tan θ =
y

x
.

2. Given (r, θ), (x, y) are found using x = r cos θ and y = r sin θ

Note that we also have the relation r2 = x2 + y2.

Finding surface integrals with polar coordinates
The area of integration A is covered with coordinate circles given by r = constant and coordinate
lines given by θ = constant.
The elementary areas δA are almost rectangles having width δr and length determined by the length
of the part of the circle of radius r between θ and δθ, the arc length of this part of the circle is rδθ.

So δA ≈ rδrδθ. Thus to evaluate

∫
A

f(x, y) dA we sum f(r, θ)rδrδθ for all δA.∫
A

f(x, y) dA =

∫ θ=θB

θ=θA

∫ r=r2(θ)

r=r1(θ)

f(r, θ) r drdθ

Key Point 6

Polar Coordinates

In double integration using polar coordinates, the variable r appears in f(r, θ) and in rdrdθ. As
explained above, this r is required because the elementary area element become larger further away
from the origin.
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r = constant

δA

θ = θB

r = r2(θ)

θ = constant

θ = θAr = r1(θ)

Figure 18

Note that the use of polar coordinates is a special case of the use of a change of variables. Further
cases of change of variables will be considered in Section 27.4.

Example 14

Evaluate

∫ π
3

0

∫ 2

0

r cos θ drdθ and sketch the region of integration. Note that it is

the function cos θ which is being integrated over the region and the r comes from
the rdrdθ.

θ = π/3

r = 2

θ = 0

r = 0
θ

x

y

Figure 19
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Solution

The evaluation is similar to that for cartesian coordinates. The inner integral with respect to r, is
evaluated first with θ constant. Then the outer θ integral is evaluated.∫ π

3

0

∫ 2

0

r cos θ dθ =

∫ π
3

0

[
1

2
r2 cos θ

]2

0

dθ

=

∫ π
3

0

2 cos θ dθ

=
[
2 sin θ

]π
3

0
= 2 sin

π

3
=
√

3

With θ constant r varies between 0 and 2, so the bounding curves of the polar strip start at r = 0
and end at r = 2. As θ varies between 0 and π

3
a sector of a circular disc is swept out. This sector

is the region of integration shown above.

Example 15
Earlier in this Section, an example concerned integrating the function f(x, y) =
5x2y over the half of the unit circle which lies above the x-axis. It is also possible
to carry out this integration using polar coordinates.

Solution

The semi-circle is characterised by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π. So the integral may be written
(remembering that x = r cos θ and y = r sin θ)∫ π

0

∫ 1

0

5(r cos θ)2(r sin θ) r drdθ

which can be evaluated as follows∫ π

0

∫ 1

0

5r4 sin θ cos2 θ drdθ

=

∫ π

0

[
r5 sin θ cos2 θ

]1

0
dθ

=

∫ π

0

sin θ cos2 θ dθ =

[
−1

3
cos3 θ

]π

0

= −1

3
cos3 π +

1

3
cos3 0 = −1

3
(−1) +

1

3
(1) =

2

3

This is, of course, the same answer that was obtained using an integration over rectangular coordi-
nates.

HELM (2008):
Section 27.2: Multiple Integrals over Non-rectangular Regions

35



4. Applications of surface integration

Force on a dam
Section 27.1 considered the force on a rectangular dam of width 100 m and height 40 m. Instead,
imagine that the dam is not rectangular in profile but instead has a width of 100 m at the top but
only 80 m at the bottom. The top and bottom of the dam can be given by line segments y = 0

(bottom) and y = 40 while the sides are parts of the lines y = 40 − 4x i.e. x = 10 − y

4
(left) and

y = 40 + 4(x− 100) = 4x− 360 i.e. x = 90 +
y

4
(right). (See Figure 20).

x

(0, 40) y = 40 (100, 40)

y = 40 4x

y = 4x 360

y = 0(10, 0) (90, 0)

y

DAM

−

−

Figure 20

Thus the dam exists at heights y between 0 and 40 while for each value of y, the horizontal coordinate

x varies between x = 10− y

4
and x = 90 +

y

4
. Thus the surface integral representing the total force

i.e.

I =

∫
A

104(40− y) dA becomes the double integral I =

∫ 40

0

∫ 90+ y
4

10− y
4

104(40− y) dxdy

which can be evaluated as follows

I =

∫ 40

0

∫ 90+ y
4

10− y
4

104(40− y) dxdy

= 104

∫ 40

0

[
(40− y)x

]90+ y
4

10− y
4

dy = 104

∫ 40

0

[
(40− y)(90 +

y

4
)− (40− y)(10− y

4
)
]

dy

= 104

∫ 40

0

[
(40− y)(80 +

y

2
)
]

dy = 104

∫ 40

0

[
3200− 60y − y2

2

]
dy

= 104

[
3200y − 30y2 − 1

6
y3

]40

0

= 104

[
(3200× 40− 30× 402 − 1

6
403)− 0

]
= 104 × 208000

3
≈ 6.93× 108N

i.e. the total force is just under 700 meganewtons.
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Centre of pressure
A plane area in the shape of a quadrant of a circle of radius a is immersed vertically in a fluid with
one bounding radius in the surface. Find the position of the centre of pressure.

x

y

a

aO
θ

Figure 21

Note: In subsection 6 of Section 27.1 it was shown that the coordinates of the centre of pressure of
a (thin) object are

xp =

∫
A

xy dA∫
A

y dA

and yp =

∫
A

y2 dA∫
A

y dA

∫
A

y dA =

∫ π
2

0

∫ a

0

r2 sin θ drdθ =

∫ π
2

0

[
1

3
r3 sin θ

]a

0

dθ

=
1

3
a3

∫ π
2

0

sin θ dθ =
1

3
a3

[
− cos θ

]π
2

0
=

1

3
a3

∫
A

xy dA =

∫ π
2

0

∫ a

0

r3 cos θ sin θ dθ =

∫ π
2

0

[
1

4
r4 cos θ sin θ

]a

0

dθ

=
1

4
a4

∫ π
2

0

sin θ cos θ dθ =
1

4
a4

[
1

2
sin2 θ

]π
2

0

=
1

8
a4

∫
A

y2 dA =

∫ π
2

0

∫ a

0

r3 sin2 θ drdθ =

∫ π
2

0

[
1

4
r4 sin2 θ

]a

0

dθ

=
1

4
a4

∫ π
2

0

sin2 θ dθ =
1

4
a4

∫ π
2

0

1

2
(1− cos 2θ) dθ =

1

8
a4

[
θ − 1

2
sin 2θ

]π
2

0

=
1

16
πa4

Then xp =

∫
A

xy dA∫
A

y dA

=
1
8
a4

1
3
a3

=
3

8
a and yp =

∫
A

y2 dA∫
A

y dA

=
1
16

πa4

1
3
a3

=
3

16
πa.

The centre of pressure is at

(
3

8
a,

3

16
πa

)
.
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Engineering Example 1

Volume of liquid in an elliptic tank

Introduction

A tank in the shape of an elliptic cylinder has a volume of liquid poured into it. It is useful to know
in advance how deep the liquid will be. In order to make this calculation, it is necessary to perform
a multiple integration.

x

z
y

a

c
b

h

Figure 22

Problem in words

The tank has semi-axes a (horizontal) and c (vertical) and is of constant thickness b. A volume of
liquid V is poured in (assuming that V < πabc, the volume of the tank), filling it to a depth h,
which is to be calculated. Assume 3-D coordinate axes based on a point at the bottom of the tank.

Mathematical statement of the problem

Since the tank is of constant thickness b, the volume of liquid is given by the shaded area multiplied
by b, i.e.

V = b× shaded area

where the shaded area can be expressed as the double integral∫ h

z=0

∫ x2

x=x1

dxdz

where the limits x1 and x2 on x can be found from the equation of the ellipse

x2

a2
+

(z − c)2

c2
= 1
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Mathematical analysis

From the equation of the ellipse

x2 = a2

[
1− (z − c)2

c2

]
=

a2

c2

[
c2 − (z − c)2

]
=

a2

c2

[
2zc− z2

]
so x = ±a

c

√
2zc− z2

Thus

x1 = −a

c

√
2zc− z2, and x2 = +

a

c

√
2zc− z2

Consequently

V = b

∫ h

z=0

∫ x2

x=x1

dxdz = b

∫ h

z=0

[
x
]x2

x1

dz

= b

∫ h

z=0

2
a

c

√
2zc− z2 dz

Now use substitution z − c = c sin θ so that dz = c cos θ dθ

z = 0 gives θ = −π

2

z = h gives θ = sin−1

(
h

c
− 1

)
= θ0 (say)

V = b

∫ θ0

−π
2

2
a

c
c cos θ c cos θ dθ

= 2abc

∫ θ0

−π
2

cos2 θ dθ

= abc

∫ θ0

−π
2

[1 + cos 2θ] dθ

= abc

[
θ +

1

2
sin 2θ

]θ0

−π
2

= abc

[
θ0 +

1

2
sin 2θ0 −

(
−π

2
+ 0

)]
= abc

[
θ0 +

1

2
sin 2θ0 +

π

2

]
. . . (∗)

which can also be expressed in the form

V = abc

sin−1

(
h

c
− 1

)
+

(
h

c
− 1

) √
1−

(
h

c
− 1

)2

+
π

2
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While (∗) expresses V as a function of θ0 (and therefore h) to find θ0 as a function of V requires a
numerical method. For a given a, b, c and V , solve equation (∗) by a numerical method to find θ0

and find h from h = c(1 + sin θ0).

Interpretation

If a = 2 m, b = 1 m, c = 3 m (so the total volume of the tank is 6π m3 ≈ 18.85 m3), and a volume
of 7 m3 is to be poured into the tank then

V = abc

[
θ0 +

1

2
sin 2θ0 +

π

2

]
which becomes

7 = 6

[
θ0 +

1

2
sin 2θ0 +

π

2

]
and has solution θ0 = −0.205 (3 decimal places).

Finally

h = c(1 + sin θ0)

= 3(1 + sin(−0.205))

= 2.39 m to 2 d.p

compared to the maximum height of 6 m.

Exercises

1. Evaluate the functions (a) xy and (b) xy + 3y2

over the quadrilateral with vertices at (0, 0), (3, 0), (2, 2) and (0, 4).

2. Show that

∫ ∫
A

f(x, y) dy dx =

∫ ∫
A

f(x, y) dx dy for f(x, y) = xy2 when A is the interior

of the triangle with vertices at (0, 0), (2, 0) and (2, 4).

3. By reversing the order of the two integrals, evaluate the integral

∫ 4

y=0

∫ 2

x=y1/2

sin x3 dx dy

4. Integrate the function f(x, y) = x3 + xy2 over the quadrant x ≥ 0, y ≥ 0, x2 + y2 ≤ 1.

Answers

1.

∫ 2

x=0

∫ 4−x

y=0

f(x, y) dy dx +

∫ 3

x=2

∫ 6−2x

y=0

f(x, y) dy dx;
22

3
+

3

2
=

53

6
;

202

3
+

7

2
=

425

6

2. Both equal
256

15

3.

∫ 2

x=0

∫ x2

y=0

sin x3 dy dx =
1

3
(1− cos 8) ≈ 0.382

4.

∫ π/2

θ=0

∫ 1

r=0

r4 cos θ dr dθ =
1

5
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