Parametric Differentiation

11.6

Introduction

Sometimes the equation of a curve is not be given in Cartesian form $y=f(x)$ but in parametric form: $x=h(t), y=g(t)$. In this Section we see how to calculate the derivative $\frac{d y}{d x}$ from a knowledge of the so-called parametric derivatives $\frac{d x}{d t}$ and $\frac{d y}{d t}$. We then extend this to the determination of the second derivative $\frac{d^{2} y}{d x^{2}}$.
Parametric functions arise often in particle dynamics in which the parameter t represents the time and $(x(t), y(t))$ then represents the position of a particle as it varies with time.

Prerequisites

Before starting this Section you should

- be able to differentiate standard functions
- be able to plot a curve given in parametric form

Learning Outcomes

On completion you should be able to ...

- find first and second derivatives when the equation of a curve is given in parametric form

1. Parametric differentiation

In this subsection we consider the parametric approach to describing a curve:

parametric equations

parametric range

As various values of t are chosen within the parameter range the corresponding values of x, y are calculated from the parametric equations. When these points are plotted on an $x y$ plane they trace out a curve. The Cartesian equation of this curve is obtained by eliminating the parameter t from the parametric equations. For example, consider the curve:

$$
x=2 \cos t \quad y=2 \sin t \quad 0 \leq t \leq 2 \pi .
$$

We can eliminate the t variable in an obvious way - square each parametric equation and then add:

$$
x^{2}+y^{2}=4 \cos ^{2} t+4 \sin ^{2} t=4 \quad \therefore \quad x^{2}+y^{2}=4
$$

which we recognise as the standard equation of a circle with centre at $(0,0)$ with radius 2 . In a similar fashion the parametric equations

$$
x=2 t \quad y=4 t^{2} \quad-\infty<t<\infty
$$

describes a parabola. This follows since, eliminating the parameter t :

$$
t=\frac{x}{2} \quad \therefore \quad y=4\left(\frac{x^{2}}{4}\right) \quad \text { so } y=x^{2}
$$

which we recognise as the standard equation of a parabola.
The question we wish to address in this Section is 'how do we obtain the derivative $\frac{d y}{d x}$ if a curve is given in parametric form?' To answer this we note the key result in this area:

If $x=h(t)$ and $y=g(t)$ then

$$
\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}
$$

We note that this result allows the determination of $\frac{d y}{d x}$ without the need to find y as an explicit function of x.

Example 13

Determine the equation of the tangent line to the semicircle with parametric equations

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq \pi
$$

at $t=\pi / 4$.

Solution

The semicircle is drawn in Figure 9. We have also drawn the tangent line at $t=\pi / 4$ (or, equivalently, at $x=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad y=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$.)

Figure 9

Now

$$
\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{\cos t}{-\sin t}=-\cot t .
$$

Thus at $t=\frac{\pi}{4}$ we have $\frac{d y}{d x}=-\cot \left(\frac{\pi}{4}\right)=-1$.
The equation of the tangent line is

$$
y=m x+c
$$

where m is the gradient of the line and c is a constant.
Clearly $m=-1$ (since, at the point P the line and the circle have the same gradient).
To find c we note that the line passes through the point P with coordinates $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Hence

$$
\frac{1}{\sqrt{2}}=(-1) \frac{1}{\sqrt{2}}+c \quad \therefore \quad c=\frac{2}{\sqrt{2}}
$$

Finally,

$$
y=-x+\frac{2}{\sqrt{2}}
$$

is the equation of the tangent line at the point in question.

We should note, before proceeding, that a derivative with respect to the parameter t is often denoted by a 'dot'. Thus

$$
\frac{d x}{d t}=\dot{x}, \quad \frac{d y}{d t}=\dot{y}, \quad \frac{d^{2} x}{d t^{2}}=\ddot{x} \quad \text { etc. }
$$

Check your result by finding $\frac{d y}{d x}$ in the normal way.

First find $\frac{d x}{d t}, \frac{d y}{d t}$:

Your solution

Answer

$$
\frac{d x}{d t}=3, \frac{d y}{d t}=2 t-4
$$

Now obtain $\frac{d y}{d x}$:

Your solution

Answer

$\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{2 t-4}{3}=\frac{2}{3} t-\frac{4}{3}$,
or, using the 'dot' notation $\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{2 t-4}{3}=\frac{2}{3} t-\frac{4}{3}$
Now find y explicitly as a function of x by eliminating t, and so find $\frac{d y}{d x}$ directly:

Your solution

Answer

$t=\frac{x}{3} \quad \therefore \quad y=\frac{x^{2}}{9}-\frac{4 x}{3}+1 . \quad$ Finally: $\frac{d y}{d x}=\frac{2 x}{9}-\frac{4}{3}=\frac{2 t}{3}-\frac{4}{3}$.

Find the value of $\frac{d y}{d x}$ at $t=2$ if $x=3 t-4 \sin \pi t, \quad y=t^{2}+t \cos \pi t, \quad 0 \leq t \leq 4$

First find $\frac{d x}{d t}, \frac{d y}{d t}$:

Your solution

Answer

$$
\frac{d x}{d t}=3-4 \pi \cos \pi t \quad \frac{d y}{d t}=2 t+\cos \pi t-\pi t \sin \pi t
$$

Now obtain $\frac{d y}{d x}$:

Your solution

Answer

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=\frac{2 t+\cos \pi t-\pi t \sin \pi t}{3-4 \pi \cos \pi t} \\
& \text { or, using the dot notation, } \frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{2 t+\cos \pi t-\pi t \sin \pi t}{3-4 \pi \cos \pi t}
\end{aligned}
$$

Finally, substitute $t=2$ to find $\frac{d y}{d x}$ at this value of t.

Your solution

Answer

$\left.\frac{d y}{d x}\right|_{t=2}=\frac{4+1}{3-4 \pi}=\frac{5}{3-4 \pi}=-0.523$

2. Higher derivatives

Having found the first derivative $\frac{d y}{d x}$ using parametric differentiation we now ask how we might determine the second derivative $\frac{d^{2} y}{d x^{2}}$.
By definition:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

But

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} \quad \text { and so } \quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{\dot{y}}{\dot{x}}\right)
$$

Now $\frac{\dot{y}}{\dot{x}}$ is a function of t so we can change the derivative with respect to x into a derivative with respect to t since

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)=\left\{\frac{d}{d t}\left(\frac{d y}{d x}\right)\right\} \frac{d t}{d x}
$$

from the function of a function rule (Key Point 11 in Section 11.5).
But, differentiating the quotient \dot{y} / \dot{x}, we have

$$
\frac{d}{d t}\left(\frac{\dot{y}}{\dot{x}}\right)=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{2}} \quad \text { and } \quad \frac{d t}{d x}=\frac{1}{\left(\frac{d x}{d t}\right)}=\frac{1}{\dot{x}}
$$

so finally:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}
$$

Key Point 13

If $x=h(t), \quad y=g(t)$ then the first and second derivatives of y with respect to x are:

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}
$$

Example 14

If the equations of a curve are $x=2 t, y=t^{2}-3$, determine $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

Solution

Here $\dot{x}=2, \dot{y}=2 t \quad \therefore \quad \frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{2 t}{2}=t$.
Also $\ddot{x}=0, \quad \ddot{y}=2 \quad \therefore \quad \frac{d^{2} y}{d x^{2}}=\frac{2(2)-2 t(0)}{(2)^{3}}=\frac{1}{2}$.
These results can easily be checked since $t=\frac{x}{2}$ and $y=t^{2}-3$ which imply $y=\frac{x^{2}}{4}-3$. Therefore the derivatives can be obtained directly: $\quad \frac{d y}{d x}=\frac{2 x}{4}=\frac{x}{2} \quad$ and $\quad \frac{d^{2} y}{d x^{2}}=\frac{1}{2}$.

Exercises

1. For the following sets of parametric equations find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
(a) $x=3 t^{2}$
$y=4 t^{3}$
(b) $x=4-t^{2}$
$y=t^{2}+4 t$
(c) $x=t^{2} e^{t}$
$y=t$
2. Find the equation of the tangent line to the curve

$$
x=1+3 \sin t \quad y=2-5 \cos t \quad \text { at } \quad t=\frac{\pi}{6}
$$

Answers

1. (a) $\frac{d y}{d x}=2 t, \frac{d^{2} y}{d x^{2}}=\frac{1}{3 t} . \quad$ (b) $\frac{d y}{d x}=-1-\frac{2}{t}, \frac{d^{2} y}{d x^{2}}=-\frac{1}{t^{3}}$
(c) $\frac{d y}{d x}=\frac{e^{-t}}{2 t+t^{2}}, \quad \frac{d^{2} y}{d x^{2}}=-\frac{e^{-2 t}\left(t^{2}+4 t+2\right)}{(t+2)^{3} t^{3}}$
2. $\dot{x}=3 \cos t \quad \dot{y}=+5 \sin t$

$$
\therefore \quad \frac{d y}{d x}=\left.\frac{5}{3} \tan t \quad \therefore \quad \frac{d y}{d x}\right|_{t=\pi / 6}=\frac{5}{3} \tan \frac{\pi}{6}=\frac{5}{3} \frac{1}{\sqrt{3}}=\frac{5 \sqrt{3}}{9}
$$

The equation of the tangent line is $y=m x+c$ where $m=\frac{5 \sqrt{3}}{9}$.
The line passes through the point $x=1+3 \sin \frac{\pi}{6}=1+\frac{3}{2}, \quad y=2-5 \frac{\sqrt{3}}{2}$ and so

$$
2-5 \frac{\sqrt{3}}{2}=\frac{5 \sqrt{3}}{9}\left(1+\frac{3}{2}\right)+c \quad \therefore \quad c=2-\frac{35 \sqrt{3}}{9}
$$

