Power Series

Introduction

In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result that the series is absolutely convergent if $|x|<R$, divergent if $|x|>R$ and may or may not be convergent if $x= \pm R$. Finally, we extend the work to apply to general power series when the variable x is replaced by $\left(x-x_{0}\right)$.

- have knowledge of infinite series and of the ratio test

Prerequisites

Before starting this Section you should ...

- have knowledge of inequalities and of the factorial notation.
- explain what a power series is

Learning Outcomes

On completion you should be able to ...

- obtain the radius of convergence for a power series
- explain what a general power series is

1. Power series

A power series is simply a sum of terms each of which contains a variable raised to a non-negative integer power. To illustrate:

$$
\begin{aligned}
& x-x^{3}+x^{5}-x^{7}+\cdots \\
& 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

are examples of power series. In HELM 16.3 we encountered an important example of a power series, the binomial series:

$$
1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots
$$

which, as we have already noted, represents the function $(1+x)^{p}$ as long as the variable x satisfies $|x|<1$.
A power series has the general form

$$
b_{0}+b_{1} x+b_{2} x^{2}+\cdots=\sum_{p=0}^{\infty} b_{p} x^{p}
$$

where $b_{0}, b_{1}, b_{2}, \cdots$ are constants. Note that, in the summation notation, we have chosen to start the series at $p=0$. This is to ensure that the power series can include a constant term b_{0} since $x^{0}=1$.
The convergence, or otherwise, of a power series, clearly depends upon the value of x chosen. For example, the power series

$$
1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots
$$

is convergent if $x=-1$ (for then it is the alternating harmonic series) and divergent if $x=+1$ (for then it is the harmonic series).

2. The radius of convergence

The most important statement one can make about a power series is that there exists a number, R, called the radius of convergence, such that if $|x|<R$ the power series is absolutely convergent and if $|x|>R$ the power series is divergent. At the two points $x=-R$ and $x=R$ the power series may be convergent or divergent.

Key Point 11

Convergence of Power Series

For a power series $\sum_{p=0}^{\infty} b_{p} x^{p}$ with radius of convergence R then

- the series converges absolutely if $|x|<R$
- the series diverges if $|x|>R$
- the series may be convergent or divergent at $x= \pm R$

For any particular power series $\sum_{p=0}^{\infty} b_{p} x^{p}$ the value of R can be obtained using the ratio test. We know, from the ratio test that $\sum_{p=0}^{\infty} b_{p} x^{p}$ is absolutely convergent if
$\lim _{p \rightarrow \infty} \frac{\left|b_{p+1} x^{p+1}\right|}{\left|b_{p} x^{p}\right|}=\lim _{p \rightarrow \infty}\left|\frac{b_{p+1}}{b_{p}}\right||x|<1 \quad$ implying $\quad|x|<\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right| \quad$ and so $\quad R=\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|$.

Example 2

(a) Find the radius of convergence of the series

$$
1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots
$$

(b) Investigate what happens at the end-points $x=-1, x=+1$ of the region of absolute convergence.

Solution
(a) Here $1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots=\sum_{p=0}^{\infty} \frac{x^{p}}{p+1}$
so

$$
b_{p}=\frac{1}{p+1} \quad \therefore \quad b_{p+1}=\frac{1}{p+2}
$$

In this case,

$$
R=\lim _{p \rightarrow \infty}\left|\frac{p+2}{p+1}\right|=1
$$

so the given series is absolutely convergent if $|x|<1$ and is divergent if $|x|>1$.
(b) At $x=+1$ the series is $1+\frac{1}{2}+\frac{1}{3}+\cdots$ which is divergent (the harmonic series). However, at $x=-1$ the series is $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ which is convergent (the alternating harmonic series).
Finally, therefore, the series

$$
1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots
$$

is convergent if $-1 \leq x<1$.

Find the range of values of x for which the following power series converges:

$$
1+\frac{x}{3}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{3^{3}}+\cdots
$$

First find the coefficient of x^{p} :

Your solution

$$
b_{p}=
$$

Answer

$$
b_{p}=\frac{1}{3^{p}}
$$

Now find R, the radius of convergence:

Your solution

$$
R=\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|=
$$

Answer

$$
R=\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|=\lim _{p \rightarrow \infty}\left|\frac{3^{p+1}}{3^{p}}\right|=\lim _{p \rightarrow \infty}(3)=3 .
$$

When $x= \pm 3$ the series is clearly divergent. Hence the series is convergent only if $-3<x<3$.

3. Properties of power series

Let P_{1} and P_{2} represent two power series with radii of convergence R_{1} and R_{2} respectively. We can combine P_{1} and P_{2} together by addition and multiplication. We find the following properties:

Key Point 12

If P_{1} and P_{2} are power series with respective radii of convergence R_{1} and R_{2} then the sum ($P_{1}+P_{2}$) and the product $\left(P_{1} P_{2}\right)$ are each power series with the radius of convergence being the smaller of R_{1} and R_{2}.

Power series can also be differentiated and integrated on a term by term basis:
\square
Key Point 13
If P_{1} is a power series with radius of convergence R_{1} then

$$
\frac{d}{d x}\left(P_{1}\right) \text { and } \quad \int\left(P_{1}\right) d x
$$

are each power series with radius of convergence R_{1}

Example 3

Using the known result that $\quad(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\cdots \quad|x|<1$, choose $p=\frac{1}{2}$ and by differentiating obtain the power series expression for $(1+x)^{-\frac{1}{2}}$.

Solution

$$
(1+x)^{\frac{1}{2}}=1+\frac{x}{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!} x^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} x^{3}+\cdots
$$

Differentiating both sides:

$$
\frac{1}{2}(1+x)^{-\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\left(-\frac{1}{2}\right) x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} x^{2}+\cdots
$$

Multiplying through by 2 :

$$
(1+x)^{-\frac{1}{2}}=1-\frac{1}{2} x+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} x^{2}+\cdots
$$

This result can, of course, be obtained directly from the expansion for $(1+x)^{p}$ with $p=-\frac{1}{2}$.

Task
Using the known result that

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \quad|x|<1
$$

(a) Find an expression for $\ln (1+x)$
(b) Use the expression to obtain an approximation to $\ln (1.1)$
(a) Integrate both sides of $\frac{1}{1+x}=1-x+x^{2}-\cdots$ and so deduce an expression for $\ln (1+x)$:

Your solution

$$
\begin{aligned}
& \int \frac{d x}{1+x}= \\
& \int\left(1-x+x^{2}-\cdots\right) d x=
\end{aligned}
$$

Answer

$\int \frac{d x}{1+x}=\ln (1+x)+c$ where c is a constant of integration,
$\int\left(1-x+x^{2}-\cdots\right) d x=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+k$ where k is a constant of integration.
So we conclude

$$
\ln (1+x)+c=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+k \quad \text { if } \quad|x|<1
$$

Choosing $x=0$ shows that $c=k$ so they cancel from this equation.
(b) Now choose $x=0.1$ to approximate $\ln (1+0.1)$ using terms up to cubic:

Your solution

$$
\ln (1.1)=0.1-\frac{(0.1)^{2}}{2}+\frac{(0.1)^{3}}{3}-\cdots \simeq
$$

Answer

$\ln (1.1) \simeq 0.0953$ which is easily checked by calculator.

4. General power series

A general power series has the form

$$
b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)^{2}+\cdots=\sum_{p=0}^{\infty} b_{p}\left(x-x_{0}\right)^{p}
$$

Exactly the same considerations apply to this general power series as apply to the 'special' series $\sum_{p=0}^{\infty} b_{p} x^{p}$ except that the variable x is replaced by $\left(x-x_{0}\right)$. The radius of convergence of the general series is obtained in the same way:

$$
R=\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|
$$

and the interval of convergence is now shifted to have centre at $x=x_{0}$ (see Figure 4 below). The series is absolutely convergent if $\left|x-x_{0}\right|<R$, diverges if $\left|x-x_{0}\right|>R$ and may or may not converge if $\left|x-x_{0}\right|=R$.

Figure 4

Task

Find the radius of convergence of the general power series

$$
1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots
$$

First find an expression for the general term:

Your solution

$$
1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots=\sum_{p=0}^{\infty}
$$

Answer

$\sum_{p=0}^{\infty}(x-1)^{p}(-1)^{p} \quad$ so $\quad b_{p}=(-1)^{p}$
Now obtain the radius of convergence:

Your solution

$$
\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|=\quad \therefore \quad R=
$$

Answer

$\lim _{p \rightarrow \infty}\left|\frac{b_{p}}{b_{p+1}}\right|=\lim _{p \rightarrow \infty}\left|\frac{(-1)^{p}}{(-1)^{p+1}}\right|=1$.
Hence $R=1$, so the series is absolutely convergent if $|x-1|<1$.

Finally, decide on the convergence at $|x-1|=1$ (i.e. at $x-1=-1$ and $x-1=1$ i.e. $x=0$ and $x=2$):

Your solution

Answer

At $x=0$ the series is $1+1+1+\cdots$ which diverges and at $x=2$ the series is $1-1+1-1 \cdots$ which also diverges. Thus the given series only converges if $|x-1|<1$ i.e. $0<x<2$.

Exercises

1. From the result $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots, \quad|x|<1$
(a) Find an expression for $\ln (1-x)$
(b) Use this expression to obtain an approximation to $\ln (0.9)$ to 4 d.p.
2. Find the radius of convergence of the general power series $1-(x+2)+(x+2)^{2}-(x+2)^{3}+\ldots$
3. Find the range of values of x for which the power series $1+\frac{x}{4}+\frac{x^{2}}{4^{2}}+\frac{x^{3}}{4^{3}}+\ldots$ converges.
4. By differentiating the series for $(1+x)^{1 / 3}$ find the power series for $(1+x)^{-2 / 3}$ and state its radius of convergence.
5. (a) Find the radius of convergence of the series $1+\frac{x}{3}+\frac{x^{2}}{4}+\frac{x^{3}}{5}+\ldots$
(b) Investigate what happens at the points $x=-1$ and $x=+1$

Answers

1. $\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots \quad \ln (0.9) \approx-0.1054$ (4 d.p.)
2. $R=1$. Series converges if $-3<x<-1$. If $x=-1$ series diverges. If $x=-3$ series diverges.
3. Series converges if $-4<x<4$.
4. $(1+x)^{-2 / 3}=1-\frac{2}{3} x+\frac{5}{3} x^{2}+\ldots \quad$ valid for $|x|<1$.
5. (a) $R=1$. (b) At $x=+1$ series diverges. At $x=-1$ series converges.
