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Learning 

You will learn how to explore relationships between variables and how to measure the 
strength of such relationships. You should note from the outset that simply establishing
a relationship is not enough. You may establish, for example, a relationship between the
number of hours a person works in a week and their hat size. Should you conclude that
working hard causes your head to enlarge? Clearly not, any relationship existing here is
not causal! 
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Introduction
Problems in engineering often involve the exploration of the relationship(s) between two or more
variables. The technique of regression analysis is very useful and well-used in this situation. This
Section will look at the basics of regression analysis and should enable you to apply regression
techniques to the study of relationships between variables. Just because a relationship exists between
two variables does not necessarily imply that the relationship is causal. You might find, for example
that there is a relationship between the hours a person spends watching TV and the incidence of
lung cancer. This does not necessarily imply that watching TV causes lung cancer.

Assuming that a causal relationship does exist, we can measure the strength of the relationship
by means of a correlation coefficient discussed in the next Section. As you might expect, tests of
significance exist which allow us to interpret the meaning of a calculated correlation coefficient.
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Prerequisites
Before starting this Section you should . . .

• have knowledge of Descriptive Statistics
( 36)

• be able to find the expectation and variance
of sums of variables ( 39.3)

• understand the terms independent and
dependent variables

• understand the terms biased and unbiased
estimators#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• define the terms regression analysis and
regression line

• use the method of least squares for finding a
line of best fit
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1. Regression
As we have already noted, relationship(s) between variables are of interest to engineers who may
wish to determine the degree of association existing between independent and dependent variables.
Knowing this often helps engineers to make predictions and, on this basis, to forecast and plan.
Essentially, regression analysis provides a sound knowledge base from which accurate estimates of
the values of a dependent variable may be made once the values of related independent variables are
known.

It is worth noting that in practice the choice of independent variable(s) may be made by the engineer
on the basis of experience and/or prior knowledge since this may indicate to the engineer which
independent variables are likely to have a substantial influence on the dependent variable. In summary,
we may state that the principle objectives of regression analysis are:

(a) to enable accurate estimates of the values of a dependent variable to be made from known
values of a set of independent variables;

(b) to enable estimates of errors resulting from the use of a regression line as a basis of
prediction.

Note that if a regression line is represented as y = f(x) where x is the independent variable, then
the actual function used (linear, quadratic, higher degree polynomial etc.) may be obtained via the
use of a theoretical analysis or perhaps a scatter diagram (see below) of some real data. Note that
a regression line represented as y = f(x) is called a regression line of yyy on xxx.

Scatter diagrams
A useful first step in establishing the degree of association between two variables is the plotting of a
scatter diagram. Examples of pairs of measurements which an engineer might plot are:

(a) volume and pressure;

(b) acceleration and tyre wear;

(c) current and magnetic field;

(d) torsion strength of an alloy and purity.

If there exists a relationship between measured variables, it can take many forms. Even though an
outline introduction to non-linear regression is given at the end of this Workbook, we shall focus on
the linear relationship only.

In order to produce a good scatter diagram you should follow the steps given below:

1. Give the diagram a clear title and indicate exactly what information is being displayed;

2. Choose and clearly mark the axes;

3. Choose carefully and clearly mark the scales on the axes;

4. Indicate the source of the data.
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Examples of scatter diagrams are shown below.
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Figure 1 Figure 2 Figure 3

Figure 1 shows an association which follows a curve, possibly exponential, quadratic or cubic;

Figure 2 shows a reasonable degree of linear association where the points of the scatter diagram
lie in an area surrounding a straight line;

Figure 3 represents a randomly placed set of points and no linear association is present between
the variables.

Note that in Figure 2, the word ‘reasonable’ is not defined and that while points ‘close’ to the
indicated straight line may be explained by random variation, those ‘far away’ may be due to assignable
variation.

The rest of this Section will deal with linear association only although it is worth noting that techniques
do exist for transforming many non-linear relationships into linear ones. We shall investigate linear
association in two ways, firstly by using educated guess work to obtain a regression line ‘by eye’ and
secondly by using the well-known technique called the method of least squares.

Regression lines by eye
Note that at a very simple level, we may look at the data and, using an ‘educated guess’, draw
a line of regression ‘by eye’ through a set of points. However, finding a regression line by eye is
unsatisfactory as a general statistical method since it involves guess-work in drawing the line with
the associated errors in any results obtained. The guess-work can be removed by the method of least
squares in which the equation of a regression line is calculated using data. Essentially, we calculate
the equation of the regression line by minimising the sum of the squared vertical distances between
the data points and the line.
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The method of least squares - an elementary view

We assume that an experiment has been performed which has resulted in n pairs of values, say
(x1, y1), (x2, y2), · · · , (xn, yn) and that these results have been checked for approximate linearity on
the scatter diagram given below.

x

y

Q1

Q2

Qn

y = bx+a
P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

O

Figure 4

The vertical distances of each point from the line y = a + bx are easily calculated as

y1 − a− bx1, y2 − a− bx2, y3 − a− bx3 · · · yn − a− bx4

These distances are squared to guarantee that they are positive and calculus is used to minimise the
sum of the squared distances. Effectively we are minimizing the sum of a two-variable expression
and need to use partial differentiation. If you wish to follow this up and look in more detail at
the technique, any good book (engineering or mathematics) containing sections on multi-variable
calculus should suffice. We will not look at the details of the calculations here but simply note that
the process results in two equations in the two unknowns m and c being formed. These equations
are: ∑

xy − a
∑

x− b
∑

x2 = 0 (i)

and ∑
y − na− b

∑
x = 0 (ii)

The second of these equations (ii) immediately gives a useful result. Rearranging the equation we
get ∑

y

n
− a− b

∑
x

n
= 0 or, put more simply ȳ = a + bx̄

where (x̄, ȳ) is the mean of the array of data points (x1, y1), (x2, y2), · · · , (xn, yn).

This shows that the mean of the array always lies on the regression line. Since the mean is easily
calculated, the result forms a useful check for a plotted regression line. Ensure that any regression
line you draw passes through the mean of the array of data points.

Eliminating a from the equations gives a formula for the gradient b of the regression line, this is:
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b =

∑
xy

n
−

∑
x

n

∑
y

n∑
x2

n
−

(∑
x

n

)2 often written as b =
Sxy

S2
x

The quantity S2
x is, of course, the variance of the x-values. The quantity Sxy is known as the

covariance (of x and y) and will appear again later in this Workbook when we measure the degree
of linear association between two variables.

Knowing the value of b enables us to obtain the value of a from the equation ȳ = a + bx̄

Key Point 1

Least Squares Regression - yyy on xxx

The least squares regression line of y on x has the equation y = a + bx, where

b =

∑
xy

n
−

∑
x

n

∑
y

n∑
x2

n
−

(∑
x

n

)2 and a is given by the equation a = ȳ − bx̄

It should be noted that the coefficients b and a obtained here will give us the regression line of y on
x. This line is used to predict y values given x values. If we need to predict the values of x from
given values of y we need the regression line of x on y. The two lines are not the same except in the
(very) special case where all of the points lie exactly on a straight line. It is worth noting however,
that the two lines cross at the point (x̄, ȳ). It can be shown that the regression line of x on y is
given by Key Point 2:

Key Point 2

Least Squares Regression - xxx on yyy

The regression line of x on y is

x = a′ + b′y

where

b′ =

∑
xy

n
−

∑
x

n

∑
y

n∑
y2

n
−

(∑
y

n

)2 and a′ = x̄− b′ȳ
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Example 1
A warehouse manager of a company dealing in large quantities of steel cable needs
to be able to estimate how much cable is left on his partially used drums. A
random sample of twelve partially used drums is taken and each drum is weighed
and the corresponding length of cable measured. The results are given in the table
below:

Weight of drum and cable (x) kg. Measured length of cable (y) m.
30 70
40 90
40 100
50 120
50 130
50 150
60 160
70 190
70 200
80 200
80 220
80 230

Find the least squares regression line in the form y = mx + c and use it to predict
the lengths of cable left on drums whose weights are:

(i) 35 kg (ii) 85 kg (iii) 100 kg

In the latter case state any assumptions which you make in order to find the length
of cable left on the drum.

Solution

Excel calculations give
∑

x = 700,
∑

x2 = 44200,
∑

y = 1860
∑

xy = 118600 so that
the formulae

b =

∑
xy

n
−

∑
x

n

∑
y

n∑
x2

n
−

(∑
x

n

)2 and a = ȳ − bx̄

give a = −20 and b = 3. Our regression line is y = −20 + 3x, so y = 3x− 20.

Hence, the required predicted values are:

y35 = 3× 35− 20 = 85 y85 = 3× 85− 20 = 235 y100 = 3× 100− 20 = 280

all results being in metres.

To obtain the last result we have assumed that the linearity of the relationship continues beyond
the range of values actually taken.
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Task

An article in the Journal of Sound and Vibration 1991 (151) explored a possible
relationship between hypertension (defined as blood pressure rise in mm of mer-
cury) and exposure to noise levels (measured in decibels). Some data given is as
follows:

Noise Level (x) Blood pressure rise (y) Noise Level (x) Blood pressure rise (y)
60 1 85 5
63 0 89 4
65 1 90 6
70 2 90 8
70 5 90 4
70 1 90 5
80 4 94 7
90 6 100 9
80 2 100 7
80 3 100 6

(a) Draw a scatter diagram of the data.

(b) Comment on whether a linear model is appropriate for the data.

(c) Calculate a line of best fit of y on x for the data given.

(d) Use your regression line predict the expected rise in blood pressure for
a exposure to a noise level of 97 decibels.

Your solution

8 HELM (2008):
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Answer

(a) Entering the data into Microsoft Excel and plotting gives

Blood Pressure increase versus recorded sound level
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(b) A linear model is appropriate.

(c) Excel calculations give
∑

x = 1656,
∑

x2 = 140176,
∑

y = 86,
∑

xy = 7654
so that b = 0.1743 and a = −10.1315. Our regression line is y = 0.1743x− 10.1315.

(d) The predicted value is: y97 = 0.1743× 97− 10.1315 = 6.78 mm mercury.

The method of least squares - a modelling view

We take the dependent variable Y to be a random variable whose value, for a fixed value of x depends
on the value of x and a random error component say e and we write

Y = α + βx + e

Adopting the notation of conditional probability, we are looking for the expected value of Y for a
given value of x. The expected value of Y for a given value of x is denoted by

E(Y |x) = E(α + βx + e) = E(α + βx) + E(e)

The variance of Y for a given value of x is given by the relationship

V(Y |x) = V(α + βx + e) = V(α + βx) + V(e), assuming independence.

If µY |x represents the true mean value of Y for a given value of x then

µY |x = α + βx, assuming a linear relationship holds,

is a straight line of mean values. If we now assume that the errors e are distributed with mean 0 and
variance σ2 we may write

E(Y |x) = E(α + βx) + E(e) = α + βx since E(e) = 0.

and
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V(Y |x) = V(α + βx) + V(e) = σ2 since V(α + βx) = 0.

This implies that for each value of x, Y is distributed with mean α + βx and variance σ2. Hence
when the variance is small the observed values of Y will be close to the regression line and when the
variance is large, at least some of the observed values of Y may not be close to the line. Note that
the assumption that the errors e are distributed with mean 0 may be made without loss of generality.
If the errors had any other mean, we could subtract it and then add the mean to the value of c. The
ideas are illustrated in the following diagram.

(y|x) =

ei

xx1 x2 x3 xi

y

O

yi

E α + βx

Figure 5

The regression line is shown passing through the means of the distributions for the individual values
of x. The value of y corresponding to the x-value xi can be represented by the equation

yi = α + βxi + ei

where ei is the error of the observed value of y, that is the difference from its expected value, namely

E(Y |xi) = µy|xi
= α + βxi

Now, if we estimate α and β with a and b, the residual, or estimated error, becomes

êi = yi − a− bxi

so that the sum of the squares of the residuals is given by

S =
∑

ê2
i =

∑
(yi − a− bxi)

2

and we may minimize the quantity S by using the method of least squares as before. The mathe-
matical details are omitted as before and the equations obtained for b and a are as before, namely

b =

∑
xy

n
−

∑
x

n

∑
y

n∑
x2

n
−

(∑
x

n

)2 and a = ȳ − bx̄.

Note that since the error ei in the ith observation essentially describes the error in the fit of the
model to the ith observation, the sum of the squares of the errors

∑
e2

i will now be used to allow us
to comment on the adequacy of fit of a linear model to a given data set.
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Adequacy of fit
We now know that the variance V(Y |x) = σ2 is the key to describing the adequacy of fit of our
simple linear model. In general, the smaller the variance, the better the fit although you should note
that it is wise to distinguish between ‘poor fit’ and a large error variance. Poor fit may suggest, for
example, that the relationship is not in fact linear and that a fundamental assumption made has been
violated. A large value of σ2 does not necessarily mean that a linear model is a poor fit.
It can be shown that the sum of the squares of the errors say SSE can be used to give an unbiased
estimator σ̂2 of σ2 via the formula

σ̂2 =
SSE

n− p

where p is the number of independent variables used in the regression equation. In the case of simple
linear regression p = 2 since we are using just x and c and the estimator becomes:

σ̂2 =
SSE

n− 2

The quantity SSE is usually used explicitly in formulae whose purpose is to determine the adequacy
of a linear model to explain the variability found in data. Two ways in which the adequacy of a
regression model may be judged are given by the so-called Coefficient of Determination and the
Adjusted Coefficient of Determination.

The coefficient of determination
Denoted by R2 , the Coefficient of Determination is defined by the formula

R2 = 1− SSE

SST

where SSE is the sum of the squares of the errors and SST is the sum of the squares of the totals
given by

∑
(yi − ŷi)

2 =
∑

y2
i − nȳ2. The value of R2 is sometimes described as representing the

amount of variability explained or accounted for by a regression model. For example, if after a
particular calculation it was found that R2 = 0.884, we could say that the model accounts for about
88% of the variability found in the data. However, deductions made on the basis of the value of
R2 should be treated cautiously, the reasons for this are embedded in the following properties of the
statistic. It can be shown that:

(a) 0 ≤ R2 ≤ 1

(b) a large value of R2 does not necessarily imply that a model is a good fit;

(c) adding a regressor variable (simple regression becomes multiple regression) always in-
creases the value of R2. This is one reason why a large value of R2 does not necessarily
imply a good model;

(d) models giving large values of R2 can be poor predictors of new values if the fitted model
does not apply at the appropriate x-value.

Finally, it is worth noting that to check the fit of a linear model properly, one should look at plots of
residual values. In some cases, tests of goodness-of-fit are available although this topic is not covered
in this Workbook.
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The adjusted coefficient of determination

Denoted (often) by R2
adj, the Adjusted Coefficient of Determination is defined as

R2
adj = 1− SSE/(n− p)

SST /(n− 1)

where p is the number of variables in the regression equation. For the simple linear model, p = 2
since we have two unknown parameters in the regression equation, the intercept c and the coefficient
m of x. It can be shown that:

(a) R2
adj is a better indicator of the adequacy of predictive power than R2 since it takes into

account the number of regressor variables used in the model;

(b) R2
adj does not necessarily increase when a new regressor variable is added.

Both coefficients claim to measure the adequacy of the predictive power of a regression model and
their values indicate the proportion of variability explained by the model. For example a value of

R2 or R2
adj = 0.9751

may be interpreted as indicating that a model explains 97.51% of the variability it describes. For
example, the drum and cable example considered previously gives the results outlined below with

R2 = 96.2 and R2
adj = 0.958

In general, R2
adj is (perhaps) more useful than R2 for comparing alternative models. In the context

of a simple linear model, R2 is easier to interpret. In the drum and cable example we would claim
that the linear model explains some 96.2% of the variation it describes.

Drum & Cable x2 Cable Length y2 xy Predicted Error
(x) (y) Values Squares
30 900 70 4900 2100 70 0.00
40 1600 90 8100 3600 100 100.00
40 1600 100 10000 4000 100 0.00
50 2500 120 14400 6000 130 100.00
50 2500 130 16900 6500 130 0.00
50 2500 150 22500 7500 130 400.00
60 3600 160 25600 9600 160 0.00
70 4900 190 36100 1330 190 0.00
70 4900 200 40000 14000 190 100.00
80 6400 200 40000 16000 220 400.00
80 6400 220 48400 17600 220 0.00
80 6400 230 52900 18400 220 100.00

Sum of x Sum of x2 Sum of y Sum of y2 Sum of xy SSE =
= 700 = 44200 = 1860 = 319800 = 118600 1200.00

b = 3 a = −20 SST = R2 = R2
adj =

31500 0.962 0.958
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Task

Use the drum and cable data given in Example 1 (page 7) and set up a spreadsheet
to verify the values of the Coefficient of Determination and the Adjusted Coefficient
of Determination calculated on page 12.

Your solution

Answer

As per the table on page 12 giving R2 = 0.962 and R2
adj = 0.958.

Significance testing for regression
Note that the results in this Section apply to the simple linear model only. Some additions are
necessary before the results can be generalized.

The discussions so far pre-suppose that a linear model adequately describes the relationship between
the variables. We can use a significance test involving the distribution to decide whether or not y is
linearly dependent on x. We set up the following hypotheses:

H0 : β = 0 and H1 : β 6= 0

Key Point 3

Significance Test for Regression

The test statistic is

Ftest =
SSR

SSE/(n− 2)

where SSR = SST − SSE and rejection at the 5% level of significance occurs if

Ftest > f0.05,1,n−2

Note that we have one degree of freedom since we are testing only one parameter (m) and that n
denotes the number of pairs of (x, y) values. A set of tables giving the 5% values of the F -distribution
is given at the end of this Workbook (Table 1).
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Example 2
Test to determine whether a simple linear model is appropriate for the data previ-
ously given in the drum and cable example above.

Solution

We know that

SST = SSR + SSE

where SST =
∑

y2 − (
∑

y)2

n
is the total sum of squares (of y) so that (from the spreadsheet

above) we have:

SSR = 31500− 1200 = 30300

Hence

Ftest =
SSR

SSE/(n− 2)
=

30300

1200/(12− 2)
= 252.5

From Table 1, the critical value is f0.05,1,10 = 241.9.

Hence, since Ftest > f0.05,1,10, we reject the null hypothesis and conclude that β 6= 0.

Regression curves
The Section should be regarded as introductory only. The reason for including non-linear regression
is to demonstrate how the method of least squares can be extended to deal with cases where the
relationship between variables is, for example, quadratic or exponential.

A regression curve is defined to be the curve passing through the expected value of Y for a set of
given values of x. The idea is illustrated by the following diagram.

Regression curve of y on x

Distribution of y for given x

f(y)

0 x1 x2 x3 xn x

y

Figure 6
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We will look at the quadratic and exponential cases in a little detail.

The quadratic case
We are looking for a functional relation of the form

y = α + βx + γx2

and so, using the method of least squares, we require the values of a, b and c which minimize the
expression

f(a, b, c) =
n∑

r=1

(yr − a− bxr − cx2
r)

2

Note here that the regression described by the form

y = α + βx + γx2

is actually a linear regression since the expression is linear in α, β and γ.
Omitting the subscripts and using partial differentiation gives

∂f

∂a
= −2

∑
(y − a− bx− cx2)

∂f

∂b
= −2

∑
x(y − a− bx− cx2)

∂f

∂c
= −2

∑
x2(y − a− bx− cx2)

At a minimum we require

∂f

∂a
=

∂f

∂b
=

∂f

∂c
= 0

which results in the three linear equations∑
y − na− b

∑
x− c

∑
x2 = 0∑

xy − a
∑

x− b
∑

x2 − c
∑

x3 = 0∑
x2y − a

∑
x2 − b

∑
x3 − c

∑
x4 = 0

which can be solved to give the values of a, b and c.

The exponential case
We use the same technique to look for a functional relation of the form

y = αeβx

As before, using the method of least squares, we require the values of a and b which minimize the
expression

f(a, b) =
n∑

r=1

(yr − aebxr)2

Again omitting the subscripts and using partial differentiation gives
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∂f

∂a
= −2

∑
ebx(y − aebx)

∂f

∂b
= −2

∑
axebx(y − aebx)

At a minimum we require

∂f

∂a
=

∂f

∂b
= 0

which results in the two non-linear equations∑
yebx − a

∑
e2bx = 0

∑
xyebx − a

∑
xe2bx

which can be solved by iterative methods to give the values of a and b.

Note that it is possible to combine (for example) linear and exponential regression to obtain a
regression equation of the form

y = (α + βx)eγx

The method of least squares may then be used to find estimates a, b, c of α, β, γ.
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