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Introduction
In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions.
Firstly we look at matrices where one or more of the eigenvalues is repeated. We shall see that this
sometimes (but not always) causes problems in the diagonalization process that was discussed in the
previous Section. We shall then consider the special properties possessed by symmetric matrices
which make them particularly easy to work with.
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Prerequisites

Before starting this Section you should . . .

• have a knowledge of determinants and
matrices

• have a knowledge of linear first order
differential equations'
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Learning Outcomes

On completion you should be able to . . .

• state the conditions under which a matrix
with repeated eigenvalues may be
diagonalized

• state the main properties of real symmetric
matrices
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1. Matrices with repeated eigenvalues
So far we have considered the diagonalization of matrices with distinct (i.e. non-repeated) eigen-
values. We have accomplished this by the use of a non-singular modal matrix P (i.e. one where
det P 6= 0 and hence the inverse P−1 exists). We now want to discuss briefly the case of a ma-
trix A with at least one pair of repeated eigenvalues. We shall see that for some such matrices
diagonalization is possible but for others it is not.

The crucial question is whether we can form a non-singular modal matrix P with the eigenvectors of
A as its columns.

Example

Consider the matrix

A =

[
1 0

−4 1

]
which has characteristic equation

det(A− λI) = (1− λ)(1− λ) = 0.

So the only eigenvalue is 1 which is repeated or, more formally, has multiplicity 2.
To obtain eigenvectors of A corresponding to λ = 1 we proceed as usual and solve

AX = 1X

or [
1 0

−4 1

] [
x
y

]
=

[
x
y

]
implying

x = x and − 4x + y = y

from which x = 0 and y is arbitrary.
Thus possible eigenvectors are[

0
−1

]
,

[
0
1

]
,

[
0
2

]
,

[
0
3

]
. . .

However, if we attempt to form a modal matrix P from any two of these eigenvectors,

e.g.

[
0

−1

]
and

[
0
1

]
then the resulting matrix P =

[
0 0

−1 1

]
has zero determinant.

Thus P−1 does not exist and the similarity transformation P−1AP that we have used previously
to diagonalize a matrix is not possible here.

The essential point, at a slightly deeper level, is that the columns of P in this case are not linearly
independent since[

0
−1

]
= (−1)

[
0
1

]
i.e. one is a multiple of the other.
This situation is to be contrasted with that of a matrix with non-repeated eigenvalues.
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Earlier, for example, we showed that the matrix

A =

[
2 3
3 2

]
has the non-repeated eigenvalues λ1 = −1, λ2 = 5 with associated eigenvectors

X1 =

[
1

−1

]
X2 =

[
1
1

]
These two eigenvectors are linearly independent.

since

[
1

−1

]
6= k

[
1
1

]
for any value of k 6= 0.

Here the modal matrix

P =

[
1 1

−1 1

]
has linearly independent columns: so that det P 6= 0 and P−1 exists.

The general result, illustrated by this example, is given in the following Key Point.

Key Point 4

Eigenvectors corresponding to distinct eigenvalues are always linearly independent.

It follows from this that we can always diagonalize an n × n matrix with n distinct eigenvalues
since it will possess n linearly independent eigenvectors. We can then use these as the columns of
P , secure in the knowledge that these columns will be linearly independent and hence P−1 will exist.

It follows, in considering the case of repeated eigenvalues, that the key problem is whether or not
there are still n linearly independent eigenvectors for an n× n matrix.

We shall now consider two 3× 3 cases as illustrations.

Task

Let A =

 −2 0 1
1 1 0
0 0 −2


(a) Obtain the eigenvalues and eigenvectors of A.

(b) Can three linearly independent eigenvectors for A be obtained?

(c) Can A be diagonalized?
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Your solution

Answer

(a) The characteristic equation of A is det(A− λI) =

∣∣∣∣∣∣
−2− λ 0 1

1 1− λ 0
0 0 −2− λ

∣∣∣∣∣∣ = 0

i.e. (−2− λ)(1− λ)(−2− λ) = 0 which gives λ = 1, λ = −2, λ = −2.

For λ = 1 the associated eigenvectors satisfy

 −2 0 1
1 1 0
0 0 −2

 x
y
z

 =

 x
y
z

 from which

x = 0, z = 0 and y is arbitrary. Thus an eigenvector is X =

 0
α
0

 where α is arbitrary, α 6= 0.

For the repeated eigenvalue λ = −2 we must solve AY = (−2)Y for the eigenvector Y : −2 0 1
1 1 0
0 0 −2

 x
y
z

 =

 −2x
−2y
−2z

 from which z = 0, x + 3y = 0 so the eigenvectors are

of the form Y =

 −3β
β
0

 = β

 −3
1
0

 where β 6= 0 is arbitrary.

(b) X and Y are certainly linearly independent (as we would expect since they correspond to distinct
eigenvalues.) However, there is only one independent eigenvector of the form Y corresponding to
the repeated eigenvalue −2.

(c) The conclusion is that since A is 3 × 3 and we can only obtain two linearly independent
eigenvectors then A cannot be diagonalized.
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Task

The matrix A =

 5 −4 4
12 −11 12
4 −4 5

 has eigenvalues −3, 1, 1. The eigenvector

corresponding to the eigenvalue −3 is X =

 1
3
1

 or any multiple.

Investigate carefully the eigenvectors associated with the repeated eigenvalue λ = 1
and deduce whether A can be diagonalized.

Your solution

Answer
We must solve AY = (1)Y for the required eigenvector

i.e.

 5 −4 4
12 −11 12
4 −4 5

  x
y
z

 =

 x
y
z


Each equation here gives on simplification x− y + z = 0. So we have just one equation in three
unknowns so we can choose any two values arbitrarily. The choices x = 1, y = 0 (and hence
z = −1) and x = 0, y = 1 (and hence z = 1) for example, give rise to linearly independent

eigenvectors Y1 =

 1
0

−1

 Y2 =

 0
1
1


We can thus form a non-singular modal matrix P from Y1 and Y2 together with X (given)

P =

 1 1 0
3 0 1
1 −1 1


We can then indeed diagonalize A through the transformation

P−1AP = D =

 −3 0 0
0 1 0
0 0 1
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Key Point 5

An n × n matrix with repeated eigenvalues can be diagonalized provided we can obtain n linearly
independent eigenvectors for it. This will be the case if, for each repeated eigenvalue λi of multiplicity
mi > 1, we can obtain mi linearly independent eigenvectors.

2. Symmetric matrices
Symmetric matrices have a number of useful properties which we will investigate in this Section.

Task

Consider the following four matrices

A1 =

[
3 1
4 5

]
A2 =

[
3 1
1 5

]

A3 =

 5 8 7
−1 6 8

3 4 0

 A4 =

 5 8 7
8 6 4
7 4 0


What property do the matrices A2 and A4 possess that A1 and A3 do not?

Your solution

Answer
Matrices A2 and A4 are symmetric across the principal diagonal. In other words transposing these
matrices, i.e. interchanging their rows and columns, does not change them.

AT
2 = A2 AT

4 = A4.

This property does not hold for matrices A1 and A3 which are non-symmetric.

Calculating the eigenvalues of an n×n matrix with real elements involves, in principle at least, solving
an n th order polynomial equation, a quadratic equation if n = 2, a cubic equation if n = 3, and
so on. As is well known, such equations sometimes have only real solutions, but complex solutions
(occurring as complex conjugate pairs) can also arise. This situation can therefore arise with the
eigenvalues of matrices.
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Task

Consider the non-symmetric matrix

A =

[
2 −1
5 −2

]
Obtain the eigenvalues of A and show that they form a complex conjugate pair.

Your solution

Answer
The characteristic equation of A is

det(A− λI) =

∣∣∣∣ 2− λ −1
5 −2− λ

∣∣∣∣ = 0

i.e.

−(2− λ)(2 + λ) + 5 = 0 leading to λ2 + 1 = 0

giving eigenvalues ± i which are of course complex conjugates.

In particular any 2× 2 matrix of the form

A =

[
a b

−b a

]
has complex conjugate eigenvalues a± ib.

A 3× 3 example of a matrix with some complex eigenvalues is

B =

 1 −1 −1
1 −1 0
1 0 −1


A straightforward calculation shows that the eigenvalues of B are

λ = −1 (real), λ = ±i (complex conjugates).

With symmetric matrices on the other hand, complex eigenvalues are not possible.
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Key Point 6

The eigenvalues of a symmetric matrix with real elements are always real.

The general proof of this result in Key Point 6 is beyond our scope but a simple proof for symmetric
2× 2 matrices is straightforward.

Let A =

[
a b
b c

]
be any 2× 2 symmetric matrix, a, b, c being real numbers.

The characteristic equation for A is

(a− λ)(c− λ)− b2 = 0 or, expanding: λ2 − (a + c)λ + ac− b2 = 0

from which

λ =
(a + c)±

√
(a + c)2 − 4ac + 4b2

2

The quantity under the square root sign can be treated as follows:

(a + c)2 − 4ac + 4b2 = a2 + c2 + 2ac− 4ac + b2 = (a− c)2 + 4b2

which is always positive and hence λ cannot be complex.

Task

Obtain the eigenvalues and the eigenvectors of the symmetric 2× 2 matrix

A =

[
4 −2

−2 1

]

Your solution
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Answer
The characteristic equation for A is

(4− λ)(1− λ) + 4 = 0 or λ2 − 5λ = 0

giving λ = 0 and λ = 5, both of which are of course real and also unequal (i.e. distinct). For the

larger eigenvalue λ = 5 the eigenvector X =

[
x
y

]
satisfy[

4 −2
−2 1

] [
x
y

]
=

[
5x
5y

]
i.e. −x− 2y = 0, −2x− 4y = 0

Both equations tell us that x = −2y so an eigenvector for λ = 5 is X =

[
2

−1

]
or any multiple of

this. For λ = 0 the associated eigenvectors satisfy

4x− 2y = 0 −2x + y = 0

i.e. y = 2x (from both equations) so an eigenvector is Y =

[
1
2

]
or any multiple.

We now look more closely at the eigenvectors X and Y in the last task. In particular we consider
the product XT Y .

Task

Evaluate XT Y from the previous task i.e. where

X =

[
2

−1

]
Y =

[
1
2

]

Your solution

Answer

XT Y = [2, −1]

[
1
2

]
= 2× 1− 1× 2 = 2− 2 = 0

XT Y = 0 means are X and Y are orthogonal.

Key Point 7

Two n× 1 column vectors X and Y are orthogonal if XT Y = 0.
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Task

We obtained earlier in Section 22.1 Example 6 the eigenvalues of the matrix

A =

 2 −1 0
−1 2 −1

0 −1 2


which, as we now emphasize, is symmetric. We found that the eigenvalues were
2, 2 +

√
2, 2−

√
2 which are real and distinct. The corresponding eigenvectors

were, respectively

X =

 1
0

−1

 Y =

 1

−
√

2
1

 Z =

 1√
2

1


(or, as usual, any multiple of these).

Show that these three eigenvectors X,Y, Z are mutually orthogonal.

Your solution

Answer

XT Y = [1, 0, −1]

 1

−
√

2
1

 = 1− 1 = 0

Y T Z = [1, −
√

2, 1]

 1√
2

1

 = 1− 2 + 1 = 0

ZT X = [1,
√

2, 1]

 1
0

−1

 = 1− 1 = 0

verifying the mutual orthogonality of these three eigenvectors.
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General theory
The following proof that eigenvectors corresponding to distinct eigenvalues of a symmetric matrix
are orthogonal is straightforward and you are encouraged to follow it through.

Let A be a symmetric n × n matrix and let λ1, λ2 be two distinct eigenvalues of A i.e. λ1 6= λ2

with associated eigenvectors X, Y respectively. We have seen that λ1 and λ2 must be real since A
is symmetric. Then

AX = λ1X AY = λ2Y (1)

Transposing the first of there results gives

XT AT = λ1X
T (2)

(Remember that for any two matrices the transpose of a product is the product of the transposes in
reverse order.)

We now multiply both sides of (2) on the right by Y (as well as putting AT = A, since A is
symmetric) to give:

XT AY = λ1X
T Y (3)

But, using the second eigenvalue equation of (1), equation (3) becomes

XT λ2Y = λ1X
T Y

or, since λ2 is just a number,

λ2X
T Y = λ1X

T Y

Taking all terms to the same side and factorising gives

(λ2 − λ1)X
T Y = 0

from which, since by assumption λ1 6= λ2, we obtain the result

XT Y = 0

and the orthogonality has been proved.

Key Point 8

The eigenvectors associated with distinct eigenvalues of a

symmetric matrix are mutually orthogonal.

The reader familiar with the algebra of vectors will recall that for two vectors whose Cartesian forms
are

a = axi + ayj + azk b = bxi + byj + bzk

the scalar (or dot) product is
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a · b = axbx + ayby + azbz.

Furthermore, if a and b are mutually perpendicular then a·b = 0. (The word ‘orthogonal’ is sometimes
used instead of perpendicular in the case.) Our result, that two column vectors are orthogonal if
XT Y = 0, may thus be considered as a generalisation of the 3-dimensional result a · b = 0.

Diagonalization of symmetric matrices
Recall from our earlier work that

1. We can always diagonalize a matrix with distinct eigenvalues (whether these are real or com-
plex).

2. We can sometimes diagonalize a matrix with repeated eigenvalues. (The condition for this to
be possible is that any eigenvalue of multiplicity m had to have associated with it m linearly
independent eigenvectors.)

The situation with symmetric matrices is simpler. Basically we can diagonalize any symmetric matrix.
To take the discussions further we first need the concept of an orthogonal matrix.

A square matrix A is said to be orthogonal if its inverse (if it exists) is equal to its transpose:

A−1 = AT or, equivalently, AAT = AT A = I.

Example

An important example of an orthogonal matrix is

A =

[
cos φ sin φ

− sin φ cos φ

]
which arises when we use matrices to describe rotations in a plane.

AAT =

[
cos φ sin φ

− sin φ cos φ

] [
cos φ − sin φ
sin φ cos φ

]
=

[
cos2 φ + sin2 φ 0

0 sin2 φ + cos2 φ

]
=

[
1 0
0 1

]
= I

It is clear that AT A = I also, so A is indeed orthogonal.

It can be shown, but we omit the details, that any 2× 2 matrix which is orthogonal can be written
in one of the two forms.[

cos φ sin φ
− sin φ cos φ

]
or

[
cos φ − sin φ
sin φ cos φ

]
If we look closely at either of these matrices we can see that

1. The two columns are mutually orthogonal e.g. for the first matrix we have

(cos φ − sin φ)

[
sin φ
cos φ

]
= cos φ sin φ− sin φ cos φ = 0

2. Each column has magnitude 1 (because
√

cos2 φ + sin2 φ = 1)

Although we shall not prove it, these results are necessary and sufficient for any order square matrix
to be orthogonal.
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Key Point 9

A square matrix A is said to be orthogonal if its inverse (if it exists) is equal to its transpose:

A−1 = AT or, equivalently, AAT = AT A = I.

A square matrix is orthogonal if and only if its columns are mutually orthogonal and each column
has unit magnitude.

Task

For each of the following matrices verify that the two properties above are satisfied.
Then check in both cases that AAT = AT A = I i.e. that AT = A−1.

(a) A =


√

3

2
−1

2

1

2

√
3

2

 (b) A =


1√
2

0 − 1√
2

0 1 0

− 1√
2

0
1√
2



Your solution

Answer

(a) Since

(√
3

2

1

2

) −1

2√
3

2

 = −
√

3

4
+

√
3

4
= 0 the columns are orthogonal.

Since

∣∣∣∣∣
√

3

2
+

1

2

∣∣∣∣∣ =

√
3

4
+

1

4
= 1 and

∣∣∣∣∣−1

2
+

√
3

4

∣∣∣∣∣ =

√
1

4
+

3

4
= 1 each column has unit

magnitude.

Straightforward multiplication shows AAT = AT A =

[
1 0
0 1

]
= I.

(b) Proceed as in (a).
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The following is the key result of this Section.

Key Point 10

Any symmetric matrix A can be diagonalized using an orthogonal modal matrix P via the transfor-
mation

P T AP = D =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . .

0 λn


It follows that any n× n symmetric matrix must possess n mutually orthogonal eigenvectors even
if some of the eigenvalues are repeated.

It should be clear to the reader that Key Point 10 is a very powerful result for any applications that
involve diagonalization of a symmetric matrix. Further, if we do need to find the inverse of P , then
this is a trivial process since P−1 = P T (Key Point 9).

Task

The symmetric matrix

A =

 1 0
√

2
0 2 0√
2 0 0


has eigenvalues 2, 2, −1 (i.e. eigenvalue 2 is repeated with multiplicity 2.)

Associated with the non-repeated eigenvalue −1 is an eigenvector:

X =

 1
0

−
√

2

 (or any multiple)

(a) Normalize the eigenvector X:

Your solution
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Answer

(a) Normalizing X which has magnitude
√

12 + (−
√

2)2 =
√

3 gives

1/
√

3

 1
0

−
√

2

 =


1/
√

3

0

−
√

2/3


(b) Investigate the eigenvectors associated with the repeated eigenvalue 2:

Your solution

Answer
(b) The eigenvectors associated with λ = 2 satisfy AY = 2Y

which gives

 −1 0
√

2
0 0 0√
2 0 −2

 x
y
z

 =

 0
0
0


The first and third equations give

−x +
√

2z = 0
√

2x− 2z = 0 i.e. x =
√

2z

The equations give us no information about y so its value is arbitrary.

Thus Y has the form Y =

 √
2β
α
β

 where both α and β are arbitrary.

A certain amount of care is now required in the choice of α and β if we are to find an orthogonal
modal matrix to diagonalize A.

For any choice

XT Y = (1 0 −
√

2)

 √
2β
α
β

 =
√

2β −
√

2β = 0.

So X and Y are orthogonal. (The normalization of X does not affect this.)
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However, we also need two orthogonal eigenvectors of the form

 √
2β
α
β

. Two such are

Y (1) =

 0
1
0

 ( choosing β = 0, α = 1) and Y (2) =

 √
2

0
1

 ( choosing α = 0, β = 1)

After normalization, these become Y (1) =

 0
1
0

 Y (2) =

 √2/3
0

1/
√

3



Hence the matrix P =
[
X

... Y (1) ... Y (2)
]

=

 1/
√

3 0
√

2/3
0 1 0

−
√

2/3 0 1/
√

3


is orthogonal and diagonalizes A:

P T AP =

 −1 0 0
0 2 0
0 0 2


Hermitian matrices
In some applications, of which quantum mechanics is one, matrices with complex elements arise.

If A is such a matrix then the matrix A
T

is the conjugate transpose of A, i.e. the complex
conjugate of each element of A is taken as well as A being transposed. Thus if

A =

[
2 + i 2
3i 5− 2i

]
then A

T
=

[
2− i −3i

2 5 + 2i

]
An Hermitian matrix is one satisfying

A
T

= A

The matrix A above is clearly non-Hermitian. Indeed the most obvious features of an Hermitian
matrix is that its diagonal elements must be real. (Can you see why?) Thus

A =

[
6 4 + i

4− i −2

]
is Hermitian.

A 3× 3 example of an Hermitian matrix is

A =

 1 i 5− 2i
−i 3 0

5 + 2i 0 2


An Hermitian matrix is in fact a generalization of a symmetric matrix. The key property of an
Hermitian matrix is the same as that of a real symmetric matrix – i.e. the eigenvalues are always
real.
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