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Introduction
In this Section we start to learn how to solve second order differential equations of a particular type:
those that are linear and have constant coefficients. Such equations are used widely in the modelling
of physical phenomena, for example, in the analysis of vibrating systems and the analysis of electrical
circuits.

The solution of these equations is achieved in stages. The first stage is to find what is called a ‘com-
plementary function’. The second stage is to find a ‘particular integral’. Finally, the complementary
function and the particular integral are combined to form the general solution.
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Prerequisites

Before starting this Section you should . . .

• understand what is meant by a differential
equation

• understand complex numbers ( 10)'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• recognise a linear, constant coefficient
equation

• understand what is meant by the terms
‘auxiliary equation’ and ‘complementary
function’

• find the complementary function when the
auxiliary equation has real, equal or complex
roots
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1. Constant coefficient second order linear ODEs
We now proceed to study those second order linear equations which have constant coefficients. The
general form of such an equation is:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (3)

where a, b, c are constants. The homogeneous form of (3) is the case when f(x) ≡ 0:

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (4)

To find the general solution of (3), it is first necessary to solve (4). The general solution of (4) is
called the complementary function and will always contain two arbitrary constants. We will denote
this solution by ycf.

The technique for finding the complementary function is described in this Section.

Task

State which of the following are constant coefficient equations.
State which are homogeneous.

(a)
d2y

dx2
+ 4

dy

dx
+ 3y = e−2x (b) x

d2y

dx2
+ 2y = 0

(c)
d2x

dt2
+ 3

dx

dt
+ 7x = 0 (d)

d2y

dx2
+ 4

dy

dx
+ 4y = 0

Your solution

(a)

(b)

(c)

(d)

Answer
(a) is constant coefficient and is not homogeneous.

(b) is homogeneous but not constant coefficient as the coefficient of
d2y

dx2
is x, a variable.

(c) is constant coefficient and homogeneous. In this example the dependent variable is x.

(d) is constant coefficient and homogeneous.

Note: A complementary function is the general solution of a homogeneous, linear differential equation.
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2. Finding the complementary function
To find the complementary function we must make use of the following property.

If y1(x) and y2(x) are any two (linearly independent) solutions of a linear, homogeneous second order
differential equation then the general solution ycf(x), is

ycf(x) = Ay1(x) + By2(x)

where A, B are constants.

We see that the second order linear ordinary differential equation has two arbitrary constants in its
general solution. The functions y1(x) and y2(x) are linearly independent if one is not a multiple
of the other.

Example 5
Verify that y1 = e4x and y2 = e2x both satisfy the constant coefficient linear
homogeneous equation:

d2y

dx2
− 6

dy

dx
+ 8y = 0

Write down the general solution of this equation.

Solution

When y1 = e4x, differentiation yields:

dy1

dx
= 4e4x and

d2y1

dx2
= 16e4x

Substitution into the left-hand side of the ODE gives 16e4x − 6(4e4x) + 8e4x, which equals 0, so
that y1 = e4x is indeed a solution.

Similarly if y2 = e2x, then

dy2

dx
= 2e2x and

d2y2

dx2
= 4e2x.

Substitution into the left-hand side of the ODE gives 4e2x− 6(2e2x) + 8e2x, which equals 0, so that
y2 = e2x is also a solution of equation the ODE. Now e2x and e4x are linearly independent functions,
so, from the property stated above we have:

ycf(x) = Ae4x + Be2x is the general solution of the ODE.

32 HELM (2008):
Workbook 19: Differential Equations



®

Example 6
Find values of k so that y = ekx is a solution of:

d2y

dx2
− dy

dx
− 6y = 0

Hence state the general solution.

Solution

As suggested we try a solution of the form y = ekx. Differentiating we find

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given equation yields:

k2ekx − kekx − 6ekx = 0 that is (k2 − k − 6)ekx = 0

The only way this equation can be satisfied for all values of x is if

k2 − k − 6 = 0

that is, (k − 3)(k + 2) = 0 so that k = 3 or k = −2. That is to say, if y = ekx is to be a solution
of the differential equation, k must be either 3 or −2. We therefore have found two solutions:

y1(x) = e3x and y2(x) = e−2x

These are linearly independent and therefore the general solution is

ycf(x) = Ae3x + Be−2x

The equation k2 − k − 6 = 0 for determining k is called the auxiliary equation.

Task

By substituting y = ekx, find values of k so that y is a solution of

d2y

dx2
− 3

dy

dx
+ 2y = 0

Hence, write down two solutions, and the general solution of this equation.

First find the auxiliary equation:

Your solution

Answer

k2 − 3k + 2 = 0
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Now solve the auxiliary equation and write down the general solution:

Your solution

Answer
The auxiliary equation can be factorised as (k − 1)(k − 2) = 0 and so the required values of k are
1 and 2. The two solutions are y = ex and y = e2x. The general solution is

ycf(x) = Aex + Be2x

Example 7
Find the auxiliary equation of the differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Solution

We try a solution of the form y = ekx so that

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given differential equation yields:

ak2ekx + bkekx + cekx = 0 that is (ak2 + bk + c)ekx = 0

Since this equation is to be satisfied for all values of x, then

ak2 + bk + c = 0

is the required auxiliary equation.

Key Point 5

The auxiliary equation of a
d2y

dx2
+ b

dy

dx
+ cy = 0 is ak2 + bk + c = 0 where y = ekx
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Task

Write down, but do not solve, the auxiliary equations of the following:

(a)
d2y

dx2
+

dy

dx
+ y = 0, (b) 2

d2y

dx2
+ 7

dy

dx
− 3y = 0

(c) 4
d2y

dx2
+ 7y = 0, (d)

d2y

dx2
+

dy

dx
= 0

Your solution

(a)

(b)

(c)

(d)

Answer

(a) k2 + k + 1 = 0 (b) 2k2 + 7k − 3 = 0 (c) 4k2 + 7 = 0 (d) k2 + k = 0

Solving the auxiliary equation gives the values of k which we need to find the complementary function.
Clearly the nature of the roots will depend upon the values of a, b and c.

Case 1 If b2 > 4ac the roots will be real and distinct. The two values of k thus obtained, k1 and
k2, will allow us to write down two independent solutions: y1(x) = ek1x and y2(x) = ek2x, and so
the general solution of the differential equation will be:

y(x) = Aek1x + Bek2x

Key Point 6

If the auxiliary equation has real, distinct roots k1 and k2, the complementary function will be:

ycf(x) = Aek1x + Bek2x

Case 2 On the other hand, if b2 = 4ac the two roots of the auxiliary equation will be equal and this
method will therefore only yield one independent solution. In this case, special treatment is required.

Case 3 If b2 < 4ac the two roots of the auxiliary equation will be complex, that is, k1 and k2

will be complex numbers. The procedure for dealing with such cases will become apparent in the
following examples.
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Example 8
Find the general solution of:

d2y

dx2
+ 3

dy

dx
− 10y = 0

Solution

By letting y = ekx, so that
dy

dx
= kekx and

d2y

dx2
= k2ekx

the auxiliary equation is found to be: k2 + 3k − 10 = 0 and so (k − 2)(k + 5) = 0

so that k = 2 and k = −5. Thus there exist two solutions: y1 = e2x and y2 = e−5x.

We can write the general solution as: y = Ae2x + Be−5x

Example 9
Find the general solution of:

d2y

dx2
+ 4y = 0

Solution

As before, let y = ekx so that
dy

dx
= kekx and

d2y

dx2
= k2ekx.

The auxiliary equation is easily found to be: k2 + 4 = 0 that is, k2 = −4 so that k = ±2i, that is,
we have complex roots. The two independent solutions of the equation are thus

y1(x) = e2ix y2(x) = e−2ix

so that the general solution can be written in the form y(x) = Ae2ix + Be−2ix.

However, in cases such as this, it is usual to rewrite the solution in the following way.

Recall that Euler’s relations give: e2ix = cos 2x + i sin 2x and e−2ix = cos 2x− i sin 2x

so that y(x) = A(cos 2x + i sin 2x) + B(cos 2x− i sin 2x).

If we now relabel the constants such that A + B = C and Ai − Bi = D we can write the general
solution in the form:

y(x) = C cos 2x + D sin 2x

Note: In Example 8 we have expressed the solution as y = . . . whereas in Example 9 we have
expressed it as y(x) = . . . . Either will do.
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Example 10
Given ay′′ + by′ + cy = 0, write down the auxiliary equation. If the roots of the
auxiliary equation are complex (one root will always be the complex conjugate of
the other) and are denoted by k1 = α + βi and k2 = α− βi show that the general
solution is:

y(x) = eαx(A cos βx + B sin βx)

Solution

Substitution of y = ekx into the differential equation yields (ak2+bk+c)ekx = 0 and so the auxiliary
equation is:

ak2 + bk + c = 0

If k1 = α + βi, k2 = α− βi then the general solution is

y = Ce(α+βi)x + De(α−βi)x

where C and D are arbitrary constants.

Using the laws of indices this is rewritten as:

y = Ceαxeβix + Deαxe−βix = eαx(Ceβix + De−βix)

Then, using Euler’s relations, we obtain:

y = eαx(C cos βx + C i sin βx + D cos βx−Di sin βx)

= eαx{(C + D) cos βx + (C i−Di) sin βx}

Writing A = C + D and B = C i−Di, we find the required solution:

y = eαx(A cos βx + B sin βx)

Key Point 7

If the auxiliary equation has complex roots, α + βi and α− βi, then the complementary function
is:

ycf = eαx(A cos βx + B sin βx)
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Task

Find the general solution of y′′ + 2y′ + 4y = 0.

Write down the auxiliary equation:

Your solution

Answer

k2 + 2k + 4 = 0

Find the complex roots of the auxiliary equation:

Your solution

Answer

k = −1±
√

3i

Using Key Point 7 with α = −1 and β =
√

3 write down the general solution:

Your solution

Answer

y = e−x(A cos
√

3x + B sin
√

3x)

Key Point 8

If the auxiliary equation has two equal roots, k, the complementary function is:

ycf = (A + Bx)ekx
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Example 11
The auxiliary equation of ay′′ + by′ + cy = 0 is ak2 + bk + c = 0. Suppose this
equation has equal roots k = k1 and k = k1. Verify that y = xek1x is a solution
of the differential equation.

Solution

We have: y = xek1x y′ = ek1x(1 + k1x) y′′ = ek1x(k2
1x + 2k1)

Substitution into the left-hand side of the differential equation yields:

ek1x{a(k2
1x + 2k1) + b(1 + k1x) + cx} = ek1x{(ak2

1 + bk1 + c)x + 2ak1 + b}

But ak2
1 + bk1 + c = 0 since k1 satisfies the auxiliary equation. Also,

k1 =
−b±

√
b2 − 4ac

2a

but since the roots are equal, then b2 − 4ac = 0 hence k1 = −b/2a. So 2ak1 + b = 0. Hence
ek1x{(ak2

1 + bk1 + c)x + 2ak1 + b} = ek1x{(0)x + 0} = 0. We conclude that y = xek1x is a solution
of ay′′ + by′ + cy = 0 when the roots of the auxiliary equation are equal. This illustrates Key Point
8.

Example 12
Obtain the general solution of the equation:

d2y

dx2
+ 8

dy

dx
+ 16y = 0.

Solution

As before, a trial solution of the form y = ekx yields an auxiliary equation k2 + 8k + 16 = 0. This
equation factorizes so that (k + 4)(k + 4) = 0 and we obtain equal roots, that is, k = −4 (twice).
If we proceed as before, writing y1(x) = e−4x y2(x) = e−4x, it is clear that the two solutions are not
independent. We need to find a second independent solution. Using the result summarised in Key
Point 8, we conclude that the second independent solution is y2 = xe−4x. The general solution is
then:

y(x) = (A + Bx)e−4x
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Exercises

1. Obtain the general solutions, that is, the complementary functions, of the following equations:

(a)
d2y

dx2
− 3

dy

dx
+ 2y = 0 (b)

d2y

dx2
+ 7

dy

dx
+ 6y = 0 (c)

d2x

dt2
+ 5

dx

dt
+ 6x = 0

(d)
d2y

dt2
+ 2

dy

dt
+ y = 0 (e)

d2y

dx2
− 4

dy

dx
+ 4y = 0 (f)

d2y

dt2
+

dy

dt
+ 8y = 0

(g)
d2y

dx2
− 2

dy

dx
+ y = 0 (h)

d2y

dt2
+

dy

dt
+ 5y = 0 (i)

d2y

dx2
+

dy

dx
− 2y = 0

(j)
d2y

dx2
+ 9y = 0 (k)

d2y

dx2
− 2

dy

dx
= 0 (l)

d2x

dt2
− 16x = 0

2. Find the auxiliary equation for the differential equation L
d2i

dt2
+ R

di

dt
+

1

C
i = 0

Hence write down the complementary function.

3. Find the complementary function of the equation
d2y

dx2
+

dy

dx
+ y = 0

Answers

1. (a) y = Aex + Be2x

(b) y = Ae−x + Be−6x

(c) x = Ae−2t + Be−3t

(d) y = Ae−t + Bte−t

(e) y = Ae2x + Bxe2x

(f) y = e−0.5t(A cos 2.78t + B sin 2.78t)

(g) y = Aex + Bxex

(h) x = e−0.5t(A cos 2.18t + B sin 2.18t)

(i) y = Ae−2x + Bex

(j) y = A cos 3x + B sin 3x

(k) y = A + Be2x

(l) x = Ae4t + Be−4t

2. Lk2 + Rk +
1

C
= 0 i(t) = Aek1t + Bek2t k1, k2 =

1

2L

(
−R±

√
R2C − 4L

C

)
3. e−x/2

(
A cos

√
3

2
x + B sin

√
3

2
x
)
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3. The particular integral
Given a second order ODE

a
d2y

dx2
+ b

dy

dx
+ c y = f(x),

a particular integral is any function, yp(x), which satisfies the equation. That is, any function
which when substituted into the left-hand side, results in the expression on the right-hand side.

Task

Show that

y = −1
4
e2x

is a particular integral of

d2y

dx2
− dy

dx
− 6y = e2x (1)

Starting with y = −1
4
e2x, find

dy

dx
and

d2y

dx2
:

Your solution

Answer
dy

dx
= −1

2
e2x,

d2y

dx2
= −e2x

Now substitute these into the ODE and simplify to check it satisfies the equation:

Your solution

Answer
Substitution yields −e2x−

(
−1

2
e2x

)
− 6

(
−1

4
e2x

)
which simplifies to e2x, the same as the right-hand

side.

Therefore y = −1
4
e2x is a particular integral and we write (attaching a subscript p):

yp(x) = −1
4
e2x
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Task

State what is meant by a particular integral.

Your solution

Answer

A particular integral is any solution of a differential equation.

4. Finding a particular integral
In the previous subsection we explained what is meant by a particular integral. Now we look at a
simple method to find a particular integral. In fact our method is rather crude. It involves trial and
error and educated guesswork. We try solutions which are of the same general form as the f(x) on
the right-hand side.

Example 13
Find a particular integral of the equation

d2y

dx2
− dy

dx
− 6y = e2x

Solution

We shall attempt to find a solution of the inhomogeneous problem by trying a function of the same
form as that on the right-hand side of the ODE. In particular, let us try y(x) = Ae2x, where A is a
constant that we shall now determine. If y(x) = Ae2x then

dy

dx
= 2Ae2x and

d2y

dx2
= 4Ae2x.

Substitution in the ODE gives:

4Ae2x − 2Ae2x − 6Ae2x = e2x

that is,

−4Ae2x = e2x

To ensure that y is a solution, we require −4A = 1, that is, A = −1
4
.

Therefore the particular integral is yp(x) = −1
4
e2x.

In Example 13 we chose a trial solution Ae2x of the same form as the ODE’s right-hand side. Table
2 provides a summary of the trial solutions which should be tried for various forms of the right-hand
side.
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Table 2: Trial solutions to find the particular integral

f(x) Trial solution

(1) constant term c constant term k

(2) linear, ax + b Ax + B

(3) polynomial in x polynomial in x
of degree r: of degree r:
axr + · · ·+ bx + c Axr + · · ·+ Bx + k

(4) a cos kx A cos kx + B sin kx

(5) a sin kx A cos kx + B sin kx

(6) aekx Aekx

(7) ae−kx Ae−kx

Task

By trying a solution of the form y = αe−x find a particular integral of the equation
d2y

dx2
+

dy

dx
− 2y = 3e−x

Substitute y = αe−x into the given equation to find α, and hence find the particular integral:

Your solution

Answer

α = −3
2
; yp(x) = −3

2
e−x
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Example 14
Obtain a particular integral of the equation:

d2y

dx2
− 6

dy

dx
+ 8y = x.

Solution

In Example 13 and the last Task, we found that a fruitful approach for a first order ODE was
to assume a solution in the same form as that on the right-hand side. Suppose we assume a
solution y(x) = αx and proceed to determine α. This approach will actually fail, but let us see

why. If y(x) = αx then
dy

dx
= α and

d2y

dx2
= 0. Substitution into the differential equation yields

0− 6α + 8αx = x and α.

Comparing coefficients of x:

8αx = x so α =
1

8

Comparing constants: −6α = 0 so α = 0

We have a contradiction! Clearly a particular integral of the form αx is not possible. The problem
arises because differentiation of the term αx produces constant terms which are unbalanced on the
right-hand side. So, we try a solution of the form y(x) = αx + β with α, β constants. This is

consistent with the recommendation in Table 2 on page 43. Proceeding as before
dy

dx
= α,

d2y

dx2
= 0.

Substitution in the differential equation now gives:

0− 6α + 8(αx + β) = x

Equating coefficients of x and then equating constant terms we find:

8α = 1 (1)

−6α + 8β = 0 (2)

From (1), α = 1
8

and then from (2) β = 3
32

.

The required particular integral is yp(x) = 1
8
x + 3

32
.
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Task

Find a particular integral for the equation:

d2y

dx2
− 6

dy

dx
+ 8y = 3 cos x

First decide on an appropriate form for the trial solution, referring to Table 2 (page 43) if necessary:

Your solution

Answer

From Table 2, y = A cos x + B sin x, A and B constants.

Now find
dy

dx
and

d2y

dx2
and substitute into the differential equation:

Your solution

Answer
Differentiating, we find:

dy

dx
= −A sin x + B cos x

d2y

dx2
= −A cos x−B sin x

Substitution into the differential equation gives:

(−A cos x−B sin x)− 6(−A sin x + B cos x) + 8(A cos x + B sin x) = 3 cos x
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Equate coefficients of cos x:

Your solution

Answer

7A− 6B = 3

Also, equate coefficients of sin x:

Your solution

Answer

7B + 6A = 0

Solve these two equations in A and B simultaneously to find values for A and B, and hence obtain
the particular integral:

Your solution

Answer

A = 21
85

, B = −18
85

, yp(x) = 21
85

cos x− 18
85

sin x
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5. Finding the general solution of a second order linear
inhomogeneous ODE

The general solution of a second order linear inhomogeneous equation is the sum of its particular
integral and the complementary function. In subsection 2 (page 32) you learned how to find a
complementary function, and in subsection 4 (page 42) you learnt how to find a particular integral.
We now put these together to find the general solution.

Example 15
Find the general solution of

d2y

dx2
+ 3

dy

dx
− 10y = 3x2

Solution

The complementary function was found in Example 8 to be ycf = Ae2x + Be−5x.

The particular integral is found by trying a solution of the form y = ax2 + bx + c, so that

dy

dx
= 2ax + b,

d2y

dx2
= 2a

Substituting into the differential equation gives

2a + 3(2ax + b)− 10(ax2 + bx + c) = 3x2

Comparing constants: 2a + 3b− 10c = 0

Comparing x terms: 6a− 10b = 0

Comparing x2 terms: −10a = 3

So a = − 3

10
, b = − 9

50
, c = − 57

500
, yp(x) = − 3

10
x2 − 9

50
x− 57

500
.

Thus the general solution is y = yp(x) + ycf(x) = − 3

10
x2 − 9

50
x− 57

500
+ Ae2x + Be−5x

Key Point 9

The general solution of a second order constant coefficient ordinary differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) is y = yp + ycf

being the sum of the particular integral and the complementary function.

yp contains no arbitrary constants; ycf contains two arbitrary constants.
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Engineering Example 2

An LC circuit with sinusoidal input

The differential equation governing the flow of current in a series LC circuit when subject to an

applied voltage v(t) = V0 sin ωt is L
d2i

dt2
+

1

C
i = ωV0 cos ωt

L C

i

v

Figure 3
Obtain its general solution.

Solution

The homogeneous equation is L
d2icf
dt2

+
icf
C

= 0.

Letting icf = ekt we find the auxiliary equation is Lk2 + 1
C

= 0 so that k = ±i/
√

LC. Therefore,
the complementary function is:

icf = A cos
t√
LC

+ B sin
t√
LC

where A and B arbitrary constants.

To find a particular integral try ip = E cos ωt + F sin ωt, where E, F are constants. We find:

dip
dt

= −ωE sin ωt + ωF cos ωt
d2ip
dt2

= −ω2E cos ωt− ω2F sin ωt

Substitution into the inhomogeneous equation yields:

L(−ω2E cos ωt− ω2F sin ωt) +
1

C
(E cos ωt + F sin ωt) = ωV0 cos ωt

Equating coefficients of sin ωt gives: −ω2LF + (F/C) = 0.

Equating coefficients of cos ωt gives: −ω2LE + (E/C) = ωV0.

Therefore F = 0 and E = CV0ω/(1− ω2LC). Hence the particular integral is

ip =
CV0ω

1− ω2LC
cos ωt.

Finally, the general solution is:

i = icf + ip = A cos
t√
LC

+ B sin
t√
LC

+
CV0ω

1− ω2LC
cos ωt
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6. Inhomogeneous term in the complementary function

Occasionally you will come across a differential equation a
d2y

dx2
+ b

dy

dx
+ cy = f(x) for which the

inhomogeneous term, f(x), forms part of the complementary function. One such example is the
equation

d2y

dx2
− dy

dx
− 6y = e3x

It is straightforward to check that the complementary function is ycf = Ae3x + Be−2x. Note that the
first of these terms has the same form as the inhomogeneous term, e3x, on the right-hand side of the
differential equation.

You should verify for yourself that trying a particular integral of the form yp(x) = αe3x will not work
in a case like this. Can you see why?

Instead, try a particular integral of the form yp(x) = αxe3x. Verify that

dyp

dx
= αe3x(3x + 1) and

d2yp

dx2
= αe3x(9x + 6).

Substitute these expressions into the differential equation to find α = 1
5
.

Finally, the particular integral is yp(x) = 1
5
xe3x and so the general solution to the differential equation

is:

y = Ae3x + Be−2x + 1
5
xe3x

This shows a generally effective method - where the inhomogeneous term f(x) appears in the com-
plementary function use as a trial particular integral x times what would otherwise be used.

Key Point 10

When solving

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

if the inhomogeneous term f(x) appears in the complementary function use as a trial particular
integral x times what would otherwise be used.
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Exercises

1. Find the general solution of the following equations:

(a)
d2x

dt2
− 2

dx

dt
− 3x = 6 (b)

d2y

dx2
+ 5

dy

dx
+ 4y = 8 (c)

d2y

dt2
+ 5

dy

dt
+ 6y = 2t

(d)
d2x

dt2
+ 11

dx

dt
+ 30x = 8t (e)

d2y

dx2
+ 2

dy

dx
+ 3y = 2 sin 2x (f)

d2y

dt2
+

dy

dt
+ y = 4 cos 3t

(g)
d2y

dx2
+ 9y = 4e8x (h)

d2x

dt2
− 16x = 9e6t

2. Find a particular integral for the equation
d2x

dt2
− 3

dx

dt
+ 2x = 5e3t

3. Find a particular integral for the equation
d2x

dt2
− x = 4e−2t

4. Obtain the general solution of y′′ − y′ − 2y = 6

5. Obtain the general solution of the equation
d2y

dx2
+ 3

dy

dx
+ 2y = 10 cos 2x

Find the particular solution satisfying y(0) = 1,
dy

dx
(0) = 0

6. Find a particular integral for the equation
d2y

dx2
+

dy

dx
+ y = 1 + x

7. Find the general solution of

(a)
d2x

dt2
− 6

dx

dt
+ 5x = 3 (b)

d2x

dt2
− 2

dx

dt
+ x = et

Answers

1. (a) x = Ae−t + Be3t − 2 (b) y = Ae−x + Be−4x + 2 (c) y = Ae−2t + Be−3t + 1
3
t− 5

18

(d) x = Ae−6t + Be−5t + 0.267t− 0.0978

(e) y = e−x[A sin
√

2x + B cos
√

2x]− 8
17

cos 2x− 2
17

sin 2x

(f) y = e−0.5t(A cos 0.866t + B sin 0.866t)− 0.438 cos 3t + 0.164 sin 3t

(g) y = A cos 3x + B sin 3x + 0.0548e8x (h) x = Ae4t + Be−4t + 9
20

e6t

2. xp = 2.5e3t

3. xp = 4
3
e−2t

4. y = Ae2x + Be−x − 3

5. y = Ae−2x + Be−x + 3
2
sin 2x− 1

2
cos 2x; y = 3

2
e−2x + 3

2
sin 2x− 1

2
cos 2x

6. yp = x

7. (a) x = Aet + Be5t + 3
5

(b) x = Aet + Btet + 1
2
t2et
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