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Introduction
The calculation of the optimum value of a function of two variables is a common requirement in many
areas of engineering, for example in thermodynamics. Unlike the case of a function of one variable
we have to use more complicated criteria to distinguish between the various types of stationary point.
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Prerequisites

Before starting this Section you should . . .

• understand the idea of a function of two
variables

• be able to work out partial derivatives'
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Learning Outcomes
On completion you should be able to . . .

• identify local maximum points, local
minimum points and saddle points on the
surface z = f(x, y)

• use first partial derivatives to locate the
stationary points of a function f(x, y)

• use second partial derivatives to determine
the nature of a stationary point
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1. The stationary points of a function of two variables
Figure 7 shows a computer generated picture of the surface defined by the function
z = x3 + y3 − 3x− 3y, where both x and y take values in the interval [−1.8, 1.8].
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Figure 7

There are four features of particular interest on the surface. At point A there is a local maximum,
at B there is a local minimum, and at C and D there are what are known as saddle points.

At A the surface is at its greatest height in the immediate neighbourhood. If we move on the surface
from A we immediately lose height no matter in which direction we travel. At B the surface is at its
least height in the neighbourhood. If we move on the surface from B we immediately gain height,
no matter in which direction we travel.

The features at C and D are quite different. In some directions as we move away from these points
along the surface we lose height whilst in others we gain height. The similarity in shape to a horse’s
saddle is evident.

At each point P of a smooth surface one can draw a unique plane which touches the surface there.
This plane is called the tangent plane at P . (The tangent plane is a natural generalisation of
the tangent line which can be drawn at each point of a smooth curve.) In Figure 7 at each of
the points A, B, C,D the tangent plane to the surface is horizontal at the point of interest. Such
points are thus known as stationary points of the function. In the next subsections we show how to
locate stationary points and how to determine their nature using partial differentiation of the function
f(x, y),
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Task

In Figures 8 and 9 what are the features at A and B?
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Your solution

HELM (2008):
Section 18.3: Stationary Points

23



Answer
Figure 8 A is a saddle point, B is a local minimum.

Figure 9 A is a local maximum, B is a saddle point.

2. Location of stationary points
As we said in the previous subsection, the tangent plane to the surface z = f(x, y) is horizontal at a
stationary point. A condition which guarantees that the function f(x, y) will have a stationary point
at a point (x0, y0) is that, at that point both fx = 0 and fy = 0 simultaneously.

Task

Verify that (0, 2) is a stationary point of the function f(x, y) = 8x2+6y2−2y3+5
and find the stationary value f(0, 2).

First, find fx and fy:

Your solution

Answer

fx = 16x ; fy = 12y − 6y2

Now find the values of these partial derivatives at x = 0, y = 2:

Your solution

Answer
fx = 0 , fy = 24− 24 = 0

Hence (0, 2) is a stationary point.

The stationary value is f(0, 2) = 0 + 24− 16 + 5 = 13

Example 9
Find a second stationary point of f(x, y) = 8x2 + 6y2 − 2y3 + 5.

Solution

fx = 16x and fy ≡ 6y(2− y). From this we note that fx = 0 when x = 0, and fx = 0 and when
y = 0, so x = 0, y = 0 i.e. (0, 0) is a second stationary point of the function.

It is important when solving the simultaneous equations fx = 0 and fy = 0 to find stationary points
not to miss any solutions. A useful tip is to factorise the left-hand sides and consider systematically
all the possibilities.
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Example 10
Locate the stationary points of

f(x, y) = x4 + y4 − 36xy

Solution

First we write down the partial derivatives of f(x, y)

∂f

∂x
= 4x3 − 36y = 4(x3 − 9y)

∂f

∂y
= 4y3 − 36x = 4(y3 − 9x)

Now we solve the equations
∂f

∂x
= 0 and

∂f

∂y
= 0:

x3 − 9y = 0 (i)

y3 − 9x = 0 (ii)

From (ii) we obtain: x =
y3

9
(iii)

Now substitute from (iii) into (i)

y9

93
− 9y = 0

⇒ y9 − 94y = 0

⇒ y(y8 − 38) = 0 (removing the common factor)

⇒ y(y4 − 34)(y4 + 34) = 0 (using the difference of two squares)

We therefore obtain, as the only solutions:

y = 0 or y4 − 34 = 0 (since y4 + 34 is never zero)

The last equation implies:

(y2 − 9)(y2 + 9) = 0 (using the difference of two squares)

∴ y2 = 9 and y = ± 3.

Now, using (iii): when y = 0, x = 0, when y = 3, x = 3, and when y = −3, x = −3.

The stationary points are (0, 0), (−3,−3) and (3, 3).

Task

Locate the stationary points of

f(x, y) = x3 + y2 − 3x− 6y − 1.

First find the partial derivatives of f(x, y):

Your solution
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Answer
∂f

∂x
= 3x2 − 3,

∂f

∂y
= 2y − 6

Now solve simultaneously the equations
∂f

∂x
= 0 and

∂f

∂y
= 0:

Your solution

Answer
3x2 − 3 = 0 and 2y − 6 = 0.

Hence x2 = 1 and y = 3, giving stationary points at (1, 3) and (−1, 3).

3. The nature of a stationary point
We state, without proof, a relatively simple test to determine the nature of a stationary point, once
located. If the surface is very flat near the stationary point then the test will not be sensitive enough
to determine the nature of the point. The test is dependent upon the values of the second order
derivatives: fxx, fyy, fxy and also upon a combination of second order derivatives denoted by D where

D ≡ ∂2f

∂x2
× ∂2f

∂y2
−

(
∂2f

∂x∂y

)2

, which is also expressible as D ≡ fxxfyy − (fxy)
2

The test is as follows:

Key Point 4

Test to Determine the Nature of Stationary Points

1. At each stationary point work out the three second order partial derivatives.

2. Calculate the value of D = fxxfyy − (fxy)
2 at each stationary point.

Then, test each stationary point in turn:

3. If D < 0 the stationary point is a saddle point.

If D > 0 and
∂2f

∂x2
> 0 the stationary point is a local minimum.

If D > 0 and
∂2f

∂x2
< 0 the stationary point is a local maximum.

If D = 0 then the test is inconclusive (we need an alternative test).
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Example 11
The function: f(x, y) = x4 + y4 − 36xy has stationary points at
(0, 0), (−3,−3), (3, 3). Use Key Point 4 to determine the nature of each sta-
tionary point.

Solution

We have
∂f

∂x
= fx = 4x3 − 36y and

∂f

∂y
= fy = 4y3 − 36x.

Then
∂2f

∂x2
= fxx = 12x2,

∂2f

∂y2
= fyy = 12y2,

∂2f

∂x∂y
= fyx = −36.

A tabular presentation is useful for calculating D = fxxfyy − (fxy)
2:

Point Point Point
Derivatives (0, 0) (−3,−3) (3, 3)

fxx 0 108 108

fyy 0 108 108

fxy −36 −36 −36

D < 0 > 0 > 0

(0, 0) is a saddle point; (−3,−3) and (3, 3) are both local minima.

Task

Determine the nature of the stationary points of f(x, y) = x3 + y2− 3x− 6y− 1,
which are (1, 3) and (1,−3).

Write down the three second partial derivatives:

Your solution

Answer

fxx = 6x, fyy = 2, fxy = 0.
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Now complete the table below and determine the nature of the stationary points:

Your solution

Point Point
Derivatives (1, 3) (−1, 3)

fxx

fyy

fxy

D

Answer

Point Point
Derivatives (1, 3) (−1, 3)

fxx 6 −6

fyy 2 2

fxy 0 0

D > 0 < 0

State the nature of each stationary point:

Your solution

Answer

(1, 3) is a local minimum; (−1, 3) is a saddle point.
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For most functions the procedures described above enable us to distinguish between the various types
of stationary point. However, note the following example, in which these procedures fail.

Given f(x, y) = x4 + y4 + 2x2y2.

∂f

∂x
= 4x3 + 4xy2,

∂f

∂y
= 4y3 + 4x2y,

∂2f

∂x2
= 12x2 + 4y2,

∂2f

∂y2
= 12y2 + 4x2,

∂2f

∂x∂y
= 8xy

Location: The stationary points are located where
∂f

∂x
=

∂f

∂y
= 0, that is, where

4x3+4xy2 = 0 and 4y3+4x2y = 0. A simple factorisation implies 4x(x2+y2) = 0 and 4y(y2+x2) =
0. The only solution which satisfies both equations is x = y = 0 and therefore the only stationary
point is (0, 0).

Nature: Unfortunately, all the second partial derivatives are zero at (0, 0) and therefore D = 0, so
the test, as described in Key Point 4, fails to give us the necessary information.
However, in this example it is easy to see that the stationary point is in fact a local minimum.
This could be confirmed by using a computer generated graph of the surface near the point (0, 0).
Alternatively, we observe x4 + y4 + 2x2y2 ≡ (x2 + y2)2 so f(x, y) ≥ 0, the only point where
f(x, y) = 0 being the stationary point. This is therefore a local (and global) minimum.

Exercises

Determine the nature of the stationary points of the function in each case:

1. f(x, y) = 8x2 + 6y2 − 2y3 + 5

2. f(x, y) = x3 + 15x2 − 20y2 + 10

3. f(x, y) = 4− x2 − xy − y2

4. f(x, y) = 2x2 + y2 + 3xy − 3y − 5x + 8

5. f(x, y) = (x2 + y2)2 − 2(x2 − y2) + 1

6. f(x, y) = x4 + y4 + 2x2y2 + 2x2 + 2y2 + 1

Answers

1. (0, 0) local minimum, (0, 2) saddle point.

2. (0, 0) saddle point, (−10, 0) local maximum.

3. (0, 0) local maximum.

4. (−1, 3) saddle point.

5. (0, 0) saddle point, (1,0) local minimum, (−1, 0) local minimum.

6. f(x, y) ≡ (x2 + y2 + 1)2, local minimum at (0, 0).
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