Contents
 12

Applications of Differentiation

12.1 Tangents and Normals 2
12.2 Maxima and Minima 14
12.3 The Newton-Raphson Method 38
12.4 Curvature 47
12.5 Differentiation of Vectors 54
12.6 Case Study: Complex Impedance 60

Learning outcomes

In this Workbook you will learn to apply your knowledge of differentiation to solve some basic problems connected with curves. First you will learn how to obtain the equation of the tangent line and the normal line to any point of interest on a curve. Secondly, you will learn how to find the positions of maxima and minima on a given curve. Thirdly, you will learn how, given an approximate position of the root of a function, a better estimate of the position can be obtained using the Newton-Raphson technique. Lastly you will learn how to characterise how sharply a curve is turning by calculating its curvature.

Tangents and Normals 12.1

Introduction

In this Section we see how the equations of the tangent line and the normal line at a particular point on the curve $y=f(x)$ can be obtained. The equations of tangent and normal lines are often written as

$$
y=m x+c, \quad y=n x+d
$$

respectively. We shall show that the product of their gradients m and n is such that $m n$ is -1 which is the condition for perpendicularity.

- be able to differentiate standard functions

Prerequisites

Before starting this Section you should ...

Learning Outcomes

On completion you should be able to ...

- understand the geometrical interpretation of a derivative
- know the trigonometric expansions of $\sin (A+B), \cos (A+B)$
- obtain the condition that two given lines are perpendicular
- obtain the equation of the tangent line to a curve
- obtain the equation of the normal line to a curve

1. Perpendicular lines

One form for the equation of a straight line is

$$
y=m x+c
$$

where m and c are constants. We remember that m is the gradient of the line and its value is the tangent of the angle θ that the line makes with the positive x-axis. The constant c is the value obtained where the line intersects the y-axis. See Figure 1:

Figure 1
If we have a second line, with equation

$$
y=n x+d
$$

then, unless $m=n$, the two lines will intersect at one point. These are drawn together in Figure 2. The second line makes an angle ψ with the positive x-axis.

Figure 2
A simple question to ask is "what is the relation between m and n if the lines are perpendicular?" If the lines are perpendicular, as shown in Figure 3, the angles θ and ψ must satisfy the relation:

$$
\psi-\theta=90^{\circ}
$$

Figure 3

This is true since the angles in a triangle add up to 180°. According to the figure the three angles are $90^{\circ}, \theta$ and $180^{\circ}-\psi$. Therefore

$$
180^{\circ}=90^{\circ}+\theta+\left(180^{\circ}-\psi\right) \quad \text { implying } \quad \psi-\theta=90^{\circ}
$$

In this special case that the lines are perpendicular or normal to each other the relation between the gradients m and n is easily obtained. In this deduction we use the following basic trigonometric relations and identities:

$$
\begin{aligned}
& \sin (A-B) \equiv \sin A \cos B-\cos A \sin B \quad \cos (A-B) \equiv \cos A \cos B+\sin A \sin B \\
& \tan A \equiv \frac{\sin A}{\cos A} \quad \sin 90^{\circ}=1 \quad \cos 90^{\circ}=0
\end{aligned}
$$

Now

$$
\begin{aligned}
m & =\tan \theta \\
& =\tan \left(\psi-90^{\circ}\right) \quad \text { (see Figure 3) } \\
& =\frac{\sin \left(\psi-90^{\circ}\right)}{\cos \left(\psi-90^{\circ}\right)} \\
& =\frac{-\cos \psi}{\sin \psi}=-\frac{1}{\tan \psi}=-\frac{1}{n} \\
\text { So } m n & =-1
\end{aligned}
$$

Key Point 1

Two straight lines $y=m x+c, y=n x+d$ are perpendicular if

$$
m=-\frac{1}{n} \quad \text { or equivalently } \quad m n=-1
$$

This result assumes that neither of the lines are parallel to the x-axis or to the y-axis, as in such cases one gradient will be zero and the other infinite.

Exercise

Which of the following pairs of lines are perpendicular?
(a) $y=-x+1, \quad y=x+1$
(b) $y+x-1=0, \quad y+x-2=0$
(c) $2 y=8 x+3, \quad y=-0.25 x-1$

Answer

(a) perpendicular
(b) not perpendicular
(c) perpendicular

2. Tangents and normals to a curve

As we know, the relationship between an independent variable x and a dependent variable y is denoted by

$$
y=f(x)
$$

As we also know, the geometrical interpretation of this relation takes the form of a curve in an $x y$ plane as illustrated in Figure 4.

Figure 4
We know how to calculate a value of y given a value of x. We can either do this graphically (which is inaccurate) or else use the function itself. So, at an x value of x_{0} the corresponding y value is y_{0} where

$$
y_{0}=f\left(x_{0}\right)
$$

Let us examine the curve in the neighbourhood of the point $\left(x_{0}, y_{0}\right)$. There are two important constructions of interest

- the tangent line at $\left(x_{0}, y_{0}\right)$
- the normal line at $\left(x_{0}, y_{0}\right)$

These are shown in Figure 5.

Figure 5
We note the geometrically obvious fact: the tangent and normal lines at any given point on a curve are perpendicular to each other. normal line at the point $\left(x_{0}=1, y_{0}=1\right)$:

Your solution

Answer

From your graph, estimate the values of θ and ψ in degrees. (You will need a protractor.)

Your solution

$$
\theta \simeq \quad \psi \simeq
$$

Answer

$$
\theta \approx 63.4^{\circ} \quad \psi \approx 153.4^{\circ}
$$

Returning to the curve $y=f(x)$: we know, from the geometrical interpretation of the derivative that

$$
\left.\frac{d f}{d x}\right|_{x_{0}}=\tan \theta
$$

(the notation $\left.\frac{d f}{d x}\right|_{x_{0}}$ means evaluate $\frac{d f}{d x}$ at the value $x=x_{0}$)
Here θ is the angle the tangent line to curve $y=f(x)$ makes with the positive x-axis. This is highlighted in Figure 6:

Figure 6

3. The tangent line to a curve

Let the equation of the tangent line to the curve $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ be:

$$
y=m x+c
$$

where m and c are constants to be found. The line just touches the curve $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ so, at this point both must have the same value for the derivative. That is:

$$
m=\left.\frac{d f}{d x}\right|_{x_{0}}
$$

Since we know (in any particular case) $f(x)$ and the value x_{0} we can readily calculate the value for m. The value of c is found by using the fact that the tangent line and the curve pass through the same point $\left(x_{0}, y_{0}\right)$.

$$
y_{0}=m x_{0}+c \quad \text { and } \quad y_{0}=f\left(x_{0}\right)
$$

Thus $\quad m x_{0}+c=f\left(x_{0}\right) \quad$ leading to $\quad c=f\left(x_{0}\right)-m x_{0}$

The equation of the tangent line to the curve $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ is

$$
y=m x+c \quad \text { where } \quad m=\left.\frac{d f}{d x}\right|_{x_{0}} \quad \text { and } \quad c=f\left(x_{0}\right)-m x_{0}
$$

Alternatively, the equation is $\quad y-y_{0}=m\left(x-x_{0}\right) \quad$ where $\quad m=\left.\frac{d f}{d x}\right|_{x_{0}} \quad$ and $\quad y_{0}=f\left(x_{0}\right)$

Example 1

Find the equation of the tangent line to the curve $y=x^{2}$ at the point $(1,1)$.

Solution

Method 1

Here $f(x)=x^{2}$ and $x_{0}=1$ thus $\frac{d f}{d x}=2 x \quad \therefore \quad m=\left.\frac{d f}{d x}\right|_{x_{0}}=2$
Also $c=f\left(x_{0}\right)-m x_{0}=f(1)-m=1-2=-1$. The tangent line has equation $y=2 x-1$.

Method 2

$$
y_{0}=f\left(x_{0}\right)=f(1)=1^{2}=1
$$

The tangent line has equation $\quad y-1=2(x-1) \quad \rightarrow \quad y=2 x-1$

Find the equation of the tangent line to the curve $y=\mathrm{e}^{x}$ at the point $x=0$. The curve and the line are displayed in the following figure:

First specify x_{0} and f :

Your solution

$$
\begin{aligned}
& x_{0}= \\
& f(x)=
\end{aligned}
$$

Answer

$$
x_{0}=0 \quad f(x)=\mathrm{e}^{x}
$$

Now obtain the values of $\left.\frac{d f}{d x}\right|_{x_{0}}$ and $f\left(x_{0}\right)-m x_{0}$:

Your solution

$$
\begin{aligned}
& \left.\frac{d f}{d x}\right|_{x_{0}}= \\
& f\left(x_{0}\right)-m x_{0}=
\end{aligned}
$$

Answer

$\frac{d f}{d x}=\left.\mathrm{e}^{x} \quad \therefore \quad \frac{d f}{d x}\right|_{0}=1 \quad$ and $\quad f(0)-1(0)=\mathrm{e}^{0}-0=1$

Now obtain the equation of the tangent line:

Your solution

$$
y=
$$

Answer

$$
y=x+1
$$

Find the equation of the tangent line to the curve $y=\sin 3 x$ at the point $x=\frac{\pi}{4}$ and find where the tangent line intersects the x-axis. See the following figure:

First specify x_{0} and f :

Your solution

$x_{0}=$

$$
f(x)=
$$

Answer

$x_{0}=\frac{\pi}{4} \quad f(x)=\sin 3 x$
Now obtain the values of $\left.\frac{d f}{d x}\right|_{x_{0}}$ and $f\left(x_{0}\right)-m x_{0}$ correct to 2 d.p.:

Your solution

$$
\left.\frac{d f}{d x}\right|_{x_{0}}=\quad f\left(x_{0}\right)-m x_{0}=
$$

Answer

$\frac{d f}{d x}=\left.3 \cos 3 x \quad \therefore \quad \frac{d f}{d x}\right|_{\frac{\pi}{4}}=3 \cos \frac{3 \pi}{4}=-\frac{3}{\sqrt{2}}=-2.12$ and $f\left(\frac{\pi}{4}\right)-\frac{m \pi}{4}=\sin \frac{3 \pi}{4}-\left(\frac{-3}{\sqrt{2}}\right) \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{2}} \frac{\pi}{4}=2.37$ to 2 d.p.

Now obtain the equation of the tangent line:

Your solution

$$
y=
$$

Answer

$$
y=\frac{-3}{\sqrt{2}} x+\frac{1}{4 \sqrt{2}}(4+3 \pi) \quad \text { so } \quad y=-2.12 x+2.37 \quad \text { (to } 2 \text { d.p.) }
$$

Where does the line intersect the x-axis?

Your solution

$x=$

Answer

When $y=0 \quad \therefore \quad-2.12 x+2.37=0 \quad \therefore \quad x=1.12$ to 2 d.p.

4. The normal line to a curve

We have already noted that, at any point $\left(x_{0}, y_{0}\right)$ on a curve $y=f(x)$, the tangent and normal lines are perpendicular. Thus if the equations of the tangent and normal lines are, respectively

$$
y=m x+c \quad y=n x+d
$$

then $m=-\frac{1}{n}$ or, equivalently $n=-\frac{1}{m}$.
We have also noted, for the tangent line

$$
m=\left.\frac{d f}{d x}\right|_{x_{0}}
$$

so n can easily be obtained. To find d, we again use the fact that the normal line $y=n x+d$ and the curve have a point in common:

$$
y_{0}=n x_{0}+d \quad \text { and } \quad y_{0}=f\left(x_{0}\right)
$$

so $n x_{0}+d=f\left(x_{0}\right)$ leading to $d=f\left(x_{0}\right)-n x_{0}$.

Find the equation of the normal line to curve $y=\sin 3 x$ at the point $x=\frac{\pi}{4}$.
[The equation of the tangent line was found in the previous Task.]
First find the value of m :

Your solution

$$
m=\left.\frac{d f}{d x}\right|_{\frac{\pi}{4}}=
$$

Answer

$$
m=\frac{-3}{\sqrt{2}}
$$

Hence find the value of n :

Your solution

$$
n=
$$

Answer

$$
n m=-1 \quad \therefore \quad n=\frac{\sqrt{2}}{3}
$$

The equation of the normal line is $y=\frac{\sqrt{2}}{3} x+d$. Now find the value of d to 2 d.p.. (Remember the normal line must pass through the curve at the point $x=\frac{\pi}{4}$.)

Your solution

Answer

$$
\frac{\sqrt{2}}{3}\left(\frac{\pi}{4}\right)+d=\sin \frac{\pi}{4} \quad \therefore \quad d=\frac{1}{\sqrt{2}}-\frac{\sqrt{2}}{3} \frac{\pi}{4} \simeq 0.34
$$

Now obtain the equation of the normal line to 2 d.p.:

Your solution

$$
y=
$$

Answer

$y=0.47 x+0.34$. The curve and the normal line are shown in the following figure:

Task

Find the equation of the normal line to the curve $y=x^{3}$ at $x=1$.

First find $f(x), x_{0},\left.\frac{d f}{d x}\right|_{x_{0}}, m, n$:

Your solution

Answer

$$
f(x)=x^{3}, x_{0}=1,\left.\frac{d f}{d x}\right|_{1}=\left.3 x^{2}\right|_{1}=3 \quad \therefore \quad m=3 \text { and } n=-\frac{1}{3}
$$

Now use the property that the normal line $y=n x+d$ and the curve $y=x^{3}$ pass through the point $(1,1)$ to find d and so obtain the equation of the normal line:

Your solution

$$
d=\quad y=
$$

Answer

$1=n+d \quad \therefore \quad d=1-n=1+\frac{1}{3}=\frac{4}{3}$. Thus the equation of the normal line is $y=-\frac{1}{3} x+\frac{4}{3}$. The curve and the normal line through $(1,1)$ are shown below:

Exercises

1. Find the equations of the tangent and normal lines to the following curves at the points indicated
(a) $y=x^{4}+2 x^{2}, \quad(1,3)$
(b) $y=\sqrt{1-x^{2}}, \quad\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \quad$ What would be obtained if the point was $(1,0)$?
(c) $y=x^{1 / 2}, \quad(1,1)$
2. Find the value of a if the two curves $y=e^{-x}$ and $y=e^{a x}$ are to intersect at right-angles.

Answers

1. (a) $f(x)=x^{4}+2 x^{2} \quad \frac{d f}{d x}=4 x^{3}+4 x,\left.\quad \frac{d f}{d x}\right|_{x=1}=8$ tangent line $y=8 x+c$. This passes through $(1,3)$ so $y=8 x-5$ normal line $y=-\frac{1}{8} x+\mathrm{d}$. This passes through $(1,3)$ so $\quad y=-\frac{1}{8} x+\frac{25}{8}$.
(b) $f(x)=\sqrt{1-x^{2}} \quad \frac{d f}{d x}=\left.\frac{-x}{\sqrt{1-x^{2}}} \quad \frac{d f}{d x}\right|_{x=\frac{\sqrt{2}}{2}}=-1$
tangent line $y=-x+c$. This passes through $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ so $\quad y=-x+\sqrt{2}$
normal line $y=x+d$. This passes through $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ so $y=x$.
At $(1,0)$ the tangent line is $x=1$ and the gradient is infinite (the line is vertical), and the normal line is $y=0$.
(c) $f(x)=x^{\frac{1}{2}} \quad \frac{d f}{d x}=\left.\frac{1}{2} x^{-\frac{1}{2}} \quad \frac{d f}{d x}\right|_{x=1}=\frac{1}{2}$
tangent line: $y=\frac{1}{2} x+c$. This passes through (1,1) so $\quad y=\frac{1}{2} x+\frac{1}{2}$ normal line: $y=-2 x+d$. This passes through $(1,1)$ so $y=-2 x+3$.
2. The curves will intersect at right-angles if their tangent lines, at the point of intersection, are perpendicular.

Point of intersection: $e^{-x}=e^{a x} \quad$ i.e. $\quad-x=a x \quad \therefore \quad x=0 \quad(a=-1$ not sensible $)$
The tangent line to $y=e^{a x}$ is $y=m x+c$ where $\quad m=\left.a e^{a x}\right|_{x=0}=a$
The tangent line to $y=e^{-x}$ is $y=k x+g$ where $k=-\left.e^{-x}\right|_{x=0}=-1$
These two lines are perpendicular if $\quad a(-1)=-1 \quad$ i.e. $\quad a=1$.

