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Introduction
Probably the most important function and graph that you will use are those associated with the
straight line. A large number of relationships between engineering variables can be described using a
straight line or linear graph. Even when this is not strictly the case it is often possible to approximate
a relationship by a straight line. In this Section we study the equation of a straight line, its properties
and graph.
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Prerequisites

Before starting this Section you should . . .

• understand what is meant by a function

• be able to graph simple functions'
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Learning Outcomes
On completion you should be able to . . .

• recognise the equation of a straight line

• explain the significance of a and b in the
equation of a line f(x) = ax + b

• find the gradient of a straight line given two
points on the line

• find the equation of a straight line through
two points

• find the distance between two points
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1. Linear functions
Any function of the form y = f(x) = ax+ b where a and b are constants is called a linear function.
The constant a is called the coefficient of x, and b is referred to as the constant term.

Key Point 6

All linear functions can be written in the form:

f(x) = ax + b

where a and b are constants.

For example, f(x) = 3x+2, g(x) =
1

2
x−7, h(x) = −3x+

2

3
and k(x) = 2x are all linear functions.

The graph of a linear function is always a straight line. Such a graph can be plotted by finding just
two distinct points and joining these with a straight line.

Example 10
Plot the graph of the linear function y = f(x) = 4x + 3.

Solution

We start by finding two points. For example if we choose x = 0, then y = f(0) = 3, i.e. the first
point has coordinates (0, 3). Secondly, suppose we choose x = 5, then y = f(5) = 23. The second
point is (5, 23). These two points are then plotted and then joined by a straight line as shown in
the following diagram.
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Example 11

Plot graphs of the three linear functions y = 4x− 3, y = 4x, and y = 4x + 5, for
−2 ≤ x ≤ 2.

Solution

For each function it is necessary to find two points on the line.

For y = 4x− 3, suppose for the first point we choose x = 0, so that y = −3. For the second point,
let x = 2 so that y = 5. So, the points (0,−3) and (2, 5) can be plotted and joined. This is shown
in the following diagram.
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For y = 4x we find the points (0, 0) and (2, 8). Similarly for y = 4x + 5 we find points (0, 5) and
(2, 13). The corresponding lines are also shown in the figure.

Task

Refer to Example 11. Comment upon the effect of changing the value of the
constant term of the linear function.

Your solution

Answer
As the constant term is varied, the line moves up or down the page always remaining parallel to its
initial position.

The value of the constant term is also known as the vertical or yyy-axis intercept because this is the
value of y where the line cuts the y axis.
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Task

State the vertical intercept of each of the following lines:

(a) y = 3x + 3, (b) y =
1

2
x− 1

3
, (c) y = 1− 3x, (d) y = −5x.

In each case you need to identify the constant term:

Your solution

(a) (b) (c) (d)

Answer

(a) 3, (b) −1

3
, (c) 1, (d) 0

Example 12
Plot graphs of the lines y = 3x + 3, y = 5x + 3 and y = −2x + 3.

Solution

Note that all three lines have the same constant term, that is 3. So all three lines pass through
(0, 3), the vertical intercept. A further point has been calculated for each of the lines and their
graphs are shown in the following diagram.
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Note from the graphs in Example 12 that as the coefficient of x is changed the gradient of the
graph changes. The coefficient of x gives the gradient or slope of the line. In general, for the
line y = ax + b a positive value of a produces a graph which slopes upwards from left to right. A
negative value of a produces a graph which slopes downwards from left to right. If a is zero the line
is horizontal, that is its gradient is zero. These properties are summarised in the next figure.

HELM (2008):
Section 2.5: The Straight Line

39



a is positive

x

y

a is negative

x

y

a is zero

x

y

Figure 24: The gradient of a line y = ax + b depends upon the value of a.

Key Point 7

Linear Equation

In the linear function f(x) = ax + b, a is the gradient and b is the vertical intercept.

Task

State the gradients of the following lines:

(a) y = 7x + 2 (b) y = −1

3
x + 4 (c) y =

x + 2

3

In each case the coefficient of x must be examined:

Your solution

(a) (b) (c)

Answer

(a) 7, (b) −1/3, (c) 1/3
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Task

Which of the following lines has the steepest gradient ?

(a) y =
17x + 4

5
, (b) y = 9x− 2, (c) y =

1

3
x + 4.

Your solution

Answer

(b) because the three gradients are (a)
17

5
(b) 9 (c)

1

3

Exercises

1. State the general form of the equation of a straight line explaining the role of each of the terms
in your answer.

2. State which of the following functions will have straight line graphs.

(a) f(x) = 3x− 3, (b) f(x) = x1/2, (c) f(x) =
1

x
, (d) f(x) = 13, (e) f(x) = −2−x.

3. For each of the following, identify the gradient and vertical intercept.

(a) f(x) = 2x + 1, (b) f(x) = 3, (c) f(x) = −2x, (d) f(x) = −7− 17x,

(e) f(x) = mx + c.

Answers

1. e.g. y = ax + b. x is the independent variable, y is the dependent variable, a is the gradient
and b is the vertical intercept.

2. (a), (d) and (e) will have straight line graphs.

3. (a) gradient = 2, vertical intercept =1, (b) 0, 3, (c) −2, 0, (d) −17,−7, (e) m, c.
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2. The gradient of a straight line through two points
A common requirement is to find the gradient of a line when we know the coordinates of two points
on it. Suppose the two points are A(x1, y1), B(x2, y2) as shown in the following figure.
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Figure 25

The gradient of the line joining A and B can be calculated from the following formula.

Key Point 8

Gradient of Line Through Two Points

The gradient of the line joining A(x1, y1) and B(x2, y2) is given by

gradient =
y2 − y1

x2 − x1

Example 13
Find the gradient of the line joining the points A(0, 3) and B(4, 5).

Solution

We calculate the gradient as follows:

x
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x2 x1

=
5 3

4 0

=
1

2

gradient
−
−

−
−

Thus the gradient of the line is 1
2
. Graphically, this means that when x increases by 1, the value of

y increases by 1
2
.
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Task

Find the gradient of the line joining the points A(−1, 4) and B(2, 1).

Your solution

gradient =
y2 − y1

x2 − x1

=

Answer
1− 4

2− (−1)
= −1

Thus the gradient of the line is −1. Graphically, this means that when x increases by 1, the value of
y decreases by 1.

Exercises

1. Calculate the gradient of the line joining (1, 0) and (15,−3).
2. Calculate the gradient of the line joining (10,−3) and (15,−3).

Answers

1. −3/14. 2. 0
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3. The equation of a straight line through two points
The equation of the line passing through the points with coordinates A(x1, y1) and B(x2, y2) is given
by the following formula.

Key Point 9

The line passing through points A(x1, y1) and B(x2, y2) is given by

y − y1

y2 − y1

=
x− x1

x2 − x1

or, equivalently y − y1 =

(
y2 − y1

x2 − x1

)
(x− x1)

Task

Find the equation of the line passing through A(−7, 11) and B(1, 3).

First apply the formula:
y − y1

y2 − y1

=
x− x1

x2 − x1

Your solution
y −

=

Answer
y − 11

3− 11
=

x + 7

1 + 7
.

Simplify this to obtain the required equation:

Your solution

Answer

y = 4− x

Exercises

1. Find the equation of the line joining (1, 5) and (−9, 2).
2. Find the gradient and vertical intercept of the line joining (8, 1) and (−2,−3).

Answers 1. y =
3

10
x +

47

10
. 2. 0.4, −2.2.
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4. The distance between two points
Referring again to the figure of 2, the distance between the points A(x1, y1) and B(x2, y2) is
given using Pythagoras’ theorem by the following formula.

Key Point 10

Distance Between Two Points

The distance between points A(x1, y1) and B(x2, y2) is
√

(x2 − x1)2 + (y2 − y1)2

Task

Find the distance between A(−7, 11) and B(1, 3), using Key Point 10.

Your solution

Answer√
(1− (−7))2 + (3− 11)2 =

√
64 + 64 =

√
128

Exercises

1. Find the distance between the points (4, 5) and (−17, 1).

2. Find the distance between the points (−4,−5) and (1, 7).

Answers

1.
√

457
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