Student and Staff Wellbeing

Staff Profile

Emeritus Professor Bill Clegg

Senior Research Investigator



Bill Clegg took early retirement from teaching and administration in September 2009, but continues in part-time research, supporting and improving crystallography in Newcastle, developing and exploiting synchrotron radiation for structural studies, and engaging in the training of scientists through organising and teaching on international courses on crystallography and synchrotron radiation science. He is an author of many research papers and two editions each of two books, and has served on numerous committees and working parties serving the crystallographic, chemical and wider scientific communities.

Roles and Responsibilities 

Senior Research Investigator, contributing to the development of crystallography at Newcastle.
Formerly Principal Investigator, now Co-investigator, for a regional team of crystallographers in the north-east of England making use of Diamond Light Source beamline I19 for structural characterisation of very demanding samples. Previously Chair, Diamond User Committee (to 2014).
Baptist Chaplain at Newcastle University.

Area of Expertise

X-ray crystallography (Chemistry)


MA PhD ScD (Cambridge)
Dr habil. (Göttingen)
Cert Theol (Wales)

Previous Positions

Demonstrator in Inorganic Chemistry, Newcastle, 1973-1978
Wissenschaftlicher Assistent, Göttingen, Germany, 1978-1984
Lecturer in Inorganic Chemistry, Newcastle, 1984-1988
Reader in Chemical Crystallography, Newcastle, 1988-1992
Professor of Structural Crystallography, Newcastle, 1992-2009
A series of Joint Appointments, Daresbury Laboratory, 1995-2008


British Crystallographic Association (honorary life member; previously member of Council)
European Crystallographic Association (elected member of Council 2009-2015; currently chair of Senior Crystallographers' Group)
American Crystallographic Association
Royal Society of Chemistry
Christians in Science (Trustee)

Honours and Awards

RSC Corday-Morgan medal, 1985
Lifetime Honorary Membership of the BCA, 2010


German (fluent but slightly rusty)
French (basic school level, little used and much forgotten)
Chinese (very basic)

Informal Interests

Christian faith and ministry (accredited Baptist lay preacher) 
The relationship between science and Christian faith (speaker, writer, organiser of events)
Big Questions - Any Answers]
Choral singing (tenor - an endangered species!)
Family: 4 grown-up children, 1 grandson and 2 granddaughters so far
Walking, camping, outdoor holidays
Cycling (touring, not racing)
Cooking and bread-making
Amateur dramatics (local village Drama Group)

Google Scholar

My Google Scholar profile is William Clegg


Research Interests

More information is available at Bill Clegg's Blog

My Google Scholar profile can be found here: William Clegg

I have been involved in X-ray crystallography throughout my research career, working originally with photographic film methods, laborious calculations, and hand-drawn graphics under the supervision of Peter Wheatley in Cambridge. Use of very old X-ray equipment and main-frame computers during my first fixed-term appointment in Newcastle taught me much of the practical fundamentals of the subject and fostered an interest in the development of crystallographic methods. This was nurtured during my time in Göttingen with George Sheldrick, when I was responsible for producing a complete control program for a modern four-circle diffractometer and producing efficient data collection procedures that have since been implemented by various commercial suppliers of equipment.

Later work in Newcastle involved the use of the world’s first complete commercial CCD crystallography system (1994), a JREI project in the application of a high-intensity low-power X-ray generator (1999), and routine use of low-temperature facilities in data collection. In the last 25-30 years I have made extensive use of synchrotron radiation, and led a major project (from 1994) to construct and commission a new high-flux single-crystal diffraction station at Daresbury Laboratory for use in chemistry and materials science. This became a world-leading research facility of the UK Synchrotron Radiation Source, to the extent that a second station was provided later to address the huge oversubscription. I served on a working party that successfully bid for a new beamline (I19) at Diamond Light Source to take over after the SRS closure in 2008. I have provided an efficient and productive national crystallography service making use of the beamlines at Daresbury and Diamond between 2001 and 2010, supporting the work of dozens of leading research groups around the UK.  While chairing the Diamond User Committee for several years, I also contributed to the project developing a new User Administration System at Diamond, which is in use today.

Recent research has covered a very wide range of organic, inorganic and organometallic compounds, in collaboration with other groups in Newcastle, at other British Universities, at institutions in other countries, and in British and overseas industry and government research agencies. Within my research group we have also synthesised some of our own samples, particularly alkali metal complexes and supramolecular coordination complexes of polycarboxylic acids and related ligands (also known as metal organic frameworks) and investigated their structures and properties.

X-ray crystallography is the most powerful technique available for the determination of structures of solid-state materials. Advances in recent years have made it relatively fast and reliable, and a full crystal structure determination can now, under favourable circumstances, be carried out in a matter of hours. In 2008 we acquired a new Oxford Diffaction Gemini A Ultra diffractometer with both Mo and Cu radiation sources, and this has extended the range of samples we are able to investigate before resorting to synchrotron facilities. An even more powerful and versatile diffractometer has recently been added to the equipment portfolio at Newcastle. We are now leading a regional team of scientists (including chemists from Durham and Edinburgh) making use of Diamond for the study of more demanding samples, and have pioneered the use of remote access as a routine mode of operation of beamline I19.

Key references for crystallographic methods:
W. Clegg. Faster data collection without loss of precision: an extension of the learnt profile method. Acta Crystallogr. Sect. A, 1981, 37, 22.

W. Clegg. Synchrotron chemical crystallography (Dalton Perspective). J.Chem.Soc., Dalton Trans. 2000, 3223.

R. J. Cernik, W. Clegg, C. R. A. Catlow, G. Bushnell-Wye, J. V. Flaherty, G. N. Greaves, I. Burrows, D. J. Taylor, S. J. Teat and M. Hamichi. A new high-flux chemical and materials crystallography station at the SRS Daresbury. 1. Design, construction and test results. J.Synchrotron Rad. 1997, 4, 279 and 2000, 7, 40.

W. Clegg, M. R. J. Elsegood, S. J. Teat, C. Redshaw and V. C. Gibson. A novel titanium-oxygen ladder structure supported by calix[4]arene ligands, characterised by synchrotron crystallography. J.Chem.Soc., Dalton Trans. 1998, 3037.

W. Clegg.  Synchrotron single-crystal diffraction for chemists: development and maturity.  ACA Transactions 2013, 44, 61.

N. T. Johnson, P. G. Waddell, W. Clegg and M. R. Probert.  Remote Access Revolution: Chemical Crystallographers Enter a New Era at Diamond Light Source Beamline I19.  Crystals 2017, 7, 360.

W. Clegg.  The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials.  Phil. Trans. Roy. Soc. A 2019, 377, 20180239.

W. Clegg.  Some reflections on symmetry: pitfalls of automation and some illustrative examples.  Acta Crystallogr. Sect. E, 2019, 75, 1812.

W. Clegg.  Distortions, deviations and alternative facts: reliability in crystallogrpahy.  IUCrJ, 2021, 8, 4.

Other Expertise

Programming in (old-fashioned!) FORTRAN.
Many self-taught computing skills; touch-typing; Zoom meeting organisation and hosting.
Proof-reading (much experience from journal editing).

Current Work

In addition to work in Newcastle, I have a long-standing and very fruitful research collaboration with chemists at Strathclyde University. Begun in 1983 with Dr Ron Snaith (who later moved to Cambridge) with the encouragement of Professor Ken Wade, this later became more firmly established with Professor Rab Mulvey and recently with Professor Eva Hevia. Research is in the area of main-group chemistry, particularly involving s-block metals (alkali metals and alkaline earths), and some of the topics that have emerged over the years include ring stacking and laddering, the trapping of reactive intermediates, inverse crown complexes, alkali-metal-mediated metalation of organic substrates, and 'cleave and capture' chemistry. Many high-impact publications have resulted from this work, including several journal front cover illustrations.

I also collaborate with chemists in Prague and Leeds on structural aspects of borane cluster compounds.  Much of this work has been published, particularly recently in the ACS journal Inorganic Chemistry.

I lead a project providing commercial crystal structure determination services for one of the world's leading pharmaceutical companies.  The income contributes to the development of our crystallography facilities in Newcastle and supports my involvement in various national and international conferences.

Research Roles

Having retired formally from a position of overall responsibility for crystallography at Newcastle University, I continue now with activities in these areas:
development of facilities, operations and software;
use of synchrotron radiation in crystallography;
publication (in journals and in the Cambridge Structural Database) of a large backlog of results;
training in crystallography through summer schools organised by the BCA, ECA and Diamond Light Source.

Postgraduate Supervision

I have supervised about 25 PhD students over the years, in various aspects of synthetic chemistry and crystallography. The most recent to finish were Rachel Gill, who submitted her thesis and successfully defended it at a viva in November 2010, and James Holcroft, who completed his research and thesis in September 2012. Both Rachel and James worked in the area of metal organic frameworks, including synthesis, crystallography, gas adsorption, thermal properties, and other physical techniques.  I currently support some PhD students as a member of their progression panels.

Esteem Indicators

Honorary Member of the British Crystallographic Association from 2010.
More than 3600 entries in the Cambridge Structural Database (among the world's 10 highest contributors).
>1280 published papers and 4 books.
Numerous journal front cover illustrations.

h-index (2021): 74


Two major EPSRC grants finished in 2010.  Current research funding comes mainly from commercial contracts. We also have a long continuous series of synchrotron beamtime awards from Diamond Light Source.

Industrial Relevance

Crystal structure determination is of importance in the chemical and pharmaceutical industries and we are able to provide appropriate services using expert personnel and modern equipment, at an attractive price. We have been carrying out commercial work for 25-30 years.


I am not involved in any undergraduate or local postgraduate teaching (except contributions to crystallography research group training and discussions).

I have contributed to many international crystallography courses for postgraduate and postdoctoral researchers.  In particular, I have taught on the BCA Chemical Crystallography Group intensive course on X-ray structure analysis (originally at Aston University, subsequently in Durham) every two years since its inception in 1987 (16th course in 2017, which was my last); I have organised several Synchrotron Radiation Science summer schools in Chester/Daresbury, and continue to teach on similar schools in Oxford/Diamond every two years (most recently 2018, most of which I chaired as the main organiser was ill).  In 2016 I also taught on the 3rd European Crystallography School in Bol, Island of Brac, Croatia.  Before that, I lectured at a number of International Summer Schools on Crystallographic Computing.

I was the BCA's Kathleen Lonsdale Lecturer for 2018, giving a plenary lecture at the BCA Spring Meeting at Warwick University in March, with the title "Deviations, distortions and alternative facts: reliability in crystallography".  A version of this lecture has now been published in the Gold Open Access journal IUCrJ (IUCrJ (2021) 8, 4-11).