Semester 2 Credit Value: | 10 |
ECTS Credits: | 5.0 |
Code | Title |
---|---|
MAS1041 | Mathematical Methods A |
MAS1042 | Mathematical Methods B |
MAS1242 | The Foundations of Analysis |
MAS2041, MAS2042, MAS2242 acceptable in place of MAS1041, MAS1042, MAS1242 respectively
N/A
To further develop an understanding of the role and importance of definition, proof and rigour in
Mathematics, in the context of analysis. To develop an understanding of the formal idea of a limit and the development of integration as a limiting process.
Module Summary
The differential calculus was discovered 350 years ago and ever since has been the single most important mathematical tool for the study of nature. From the beginning, even as the calculus was being applied in science and technology, there was concern about the apparent paradoxes and confusion about the properties of differentiation. It took leading mathematicians 200 years to formulate precise definitions of continuity and differentiability and to prove their fundamental properties. We extend these ideas to integrals and give a proper treatment of integration, explaining how the 'area under a curve' comes to be related to the 'opposite of differentiation'. We shall extend our ideas on series to power series, in the process extending notions of Maclaurin series representing functions. We shall discuss the range of values of x for which a power series converges.
Sequences of real numbers. Bounds. Series and power series. Limits and continuity of real valued functions of one variable. Intermediate Value Theorem. Differentiability of real valued functions. Rolle's Theorem and the Mean Value Theorem. Riemann integration.
Students will deepen and reinforce their understanding of the role and importance of definition, proof and rigour in mathematics, and the development of integration as a limiting process. Students in this module will be expected to demonstrate a deeper level of understanding than students in MAS2224
Students will be able to demonstrate an understanding of convergent and divergent sequences. They will be able to demonstrate an understanding of bounded and unbounded sets of real numbers, of upper bounds and lower bounds where applicable, including least upper bounds and greatest lower bounds. Students will be able to determine in many cases whether or not a series converges; they will be able to find the radius of convergence of certain power series. Students will be able to show that certain functions have limits and will be able to calculate limits in many cases. They will be able to show that certain functions are continuous or not. They will be able to show that certain functions are differentiable or not. They will be able to apply the Intermediate Value Theorem, Rolle’s Theorem and the Mean Value Theorem to examples. Students will be able to show that certain functions are Riemann integrable.
Graduate Skills Framework Applicable: | Yes |
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Guided Independent Study | Assessment preparation and completion | 5 | 5:00 | 25:00 | Written assignments and CBAs |
Scheduled Learning And Teaching Activities | Lecture | 2 | 1:00 | 2:00 | Revision lectures |
Scheduled Learning And Teaching Activities | Lecture | 6 | 1:00 | 6:00 | Problem classes |
Guided Independent Study | Assessment preparation and completion | 1 | 11:00 | 11:00 | Revision for unseen Exam |
Guided Independent Study | Assessment preparation and completion | 1 | 1:30 | 1:30 | Unseen Exam |
Scheduled Learning And Teaching Activities | Lecture | 22 | 1:00 | 22:00 | Formal lectures |
Scheduled Learning And Teaching Activities | Drop-in/surgery | 6 | 1:00 | 6:00 | Drop-ins in the lecture room |
Guided Independent Study | Independent study | 5 | 1:00 | 5:00 | Assignment review |
Guided Independent Study | Independent study | 1 | 21:30 | 21:30 | Studying, practising and gaining understanding of course material |
Total | 100:00 |
Code | Title |
---|---|
MAS2224 | The Foundations of Calculus |
Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving general feedback on marked work. Problem Classes are used to help develop the students’ abilities at applying the theory to solving problems. Drop-ins are used to identify and resolve specific queries raised by students and to allow students to receive individual feedback on marked work. Office hours provide an opportunity for more direct contact between individual students and the lecturer.
The format of resits will be determined by the Board of Examiners
Description | Length | Semester | When Set | Percentage | Comment |
---|---|---|---|---|---|
Written Examination | 90 | 2 | A | 90 | unseen |
Module Code | Module Title | Semester | Comment |
---|---|---|---|
MAS2224 | The Foundations of Calculus | 2 | N/A |
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Prob solv exercises | 2 | M | 10 | Written assignments and computer based assessments |
A substantial formal unseen examination is appropriate for the assessment of the material in this module. Coursework assignments (approximately 5 assignments of approximately equal weight) allow the students to develop their problem solving techniques, to practise the methods learnt in the module, to assess their progress and to receive feedback; this is thus formative as well as summative assessment. The coursework assignments may be written assignments, computer based assessments or a combination of the two, and in the case of combined assessments the deadlines for the two parts will not necessarily be the same.
N/A
Note: The Module Catalogue now reflects module information relating to academic year 15/16. Please contact your School Office if you require module information for a previous academic year.
Disclaimer: The University will use all reasonable endeavours to deliver modules in accordance with the descriptions set out in this catalogue. Every effort has been made to ensure the accuracy of the information, however, the University reserves the right to introduce changes to the information given including the addition, withdrawal or restructuring of modules if it considers such action to be necessary.