Module Catalogue 2024/25

PHY3036 : Partial Differential Equations

PHY3036 : Partial Differential Equations

  • Offered for Year: 2024/25
  • Module Leader(s): Dr Andrew Baggaley
  • Owning School: Mathematics, Statistics and Physics
  • Teaching Location: Newcastle City Campus
Semesters

Your programme is made up of credits, the total differs on programme to programme.

Semester 2 Credit Value: 10
ECTS Credits: 5.0
European Credit Transfer System
Pre-requisite

Modules you must have done previously to study this module

Code Title
PHY2026Vector Calculus
PHY2031Differential Equations, Transforms and Waves
Pre Requisite Comment

N/A

Co-Requisite

Modules you need to take at the same time

Co Requisite Comment

N/A

Aims

To develop further the theory of partial differential equations, including methods of solution and more general results, with appropriate applications.

Module Summary

Almost all studies of physical phenomena lead to partial differential equations (PDEs), which have been studied for over 250 years; they are at the heart of modern applied mathematics, physics and engineering. It was soon noticed that many very similar – often identical – equations arise in many and varied applications, all with correspondingly similar solutions and methods of solution. This module continues the study of differential equations undertaken at Stage 2, bringing all these ideas together, developing more general methods for first-order PDEs with a particular focus on nonlinear wave equations. In addition, some of the standard results and theorems relating to classical PDEs will also be discussed. Examples of these equations, and methods of solution, will be taken from various practical, relevant and important applications.

Outline Of Syllabus

•       Classification and methods of solution for some classes of first-order partial differential equations, including the Cauchy problem, and Lagrange’s and the parametric methods of solution;

•       Classification of second-order semi-linear PDEs;

•       Nonlinear waves with applications to traffic flow;

•       Solitons and shockwaves;

•       Introduction to numerical modelling of PDEs.

Learning Outcomes

Intended Knowledge Outcomes

Students will learn the theory and applications of differential equations and become able to identify and apply appropriate methods for solving the equations, and interpret the solutions.

Students will learn various methods for the solution of first-order linear and nonlinear partial differential equations; they will also develop a better understanding of how these equations and solutions represent and model physical processes.

Intended Skill Outcomes

Students will be able to recognise standard types of partial differential equations and be able to solve them using a variety of methods.

Students will be able to solve first-order linear and some nonlinear partial differential equations and, to some extent, to apply and interpret the results to physical problems.

Students will develop skills across the cognitive domain (Bloom’s taxonomy, 2001 revised edition): remember, understand, apply, analyse, evaluate and create.

Teaching Methods

Teaching Activities
Category Activity Number Length Student Hours Comment
Scheduled Learning And Teaching ActivitiesLecture51:005:00Problem Classes
Scheduled Learning And Teaching ActivitiesLecture201:0020:00Formal Lectures
Scheduled Learning And Teaching ActivitiesLecture21:002:00Revision Lectures
Guided Independent StudyAssessment preparation and completion151:0015:00Completion of in course assignments/ examination revision
Guided Independent StudyIndependent study581:0058:00Preparation time for lectures, background reading, coursework review
Total100:00
Jointly Taught With
Code Title
MAS3806Partial Differential Equations
Teaching Rationale And Relationship

The teaching methods are appropriate to allow students to develop a wide range of skills, from understanding basic concepts and facts to higher-order thinking. Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving general feedback on marked work. Problem Classes are used to help develop the students’ abilities at applying the theory to solving problems.

Reading Lists

Assessment Methods

The format of resits will be determined by the Board of Examiners

Exams
Description Length Semester When Set Percentage Comment
Written Examination1202A80N/A
Exam Pairings
Module Code Module Title Semester Comment
Partial Differential Equations2N/A
Other Assessment
Description Semester When Set Percentage Comment
Prob solv exercises2M5Problem-solving exercises assessment
Prob solv exercises2M5Problem-solving exercises assessment
Prob solv exercises2M5Problem-solving exercises assessment
Prob solv exercises2M5Problem-solving exercises assessment
Assessment Rationale And Relationship

A substantial formal unseen examination is appropriate for the assessment of the material in this module. The format of the examination will enable students to reliably demonstrate their own knowledge, understanding and application of learning outcomes. The assurance of academic integrity forms a necessary part of programme accreditation.

Examination problems may require a synthesis of concepts and strategies from different sections, while they may have more than one ways for solution. The examination time allows the students to test different strategies, work out examples and gather evidence for deciding on an effective strategy, while carefully articulating their ideas and explicitly citing the theory they are using.

The coursework assignments allow the students to develop their problem solving techniques, to practise the methods learnt in the module, to assess their progress and to receive feedback; these assessments have a secondary formative purpose as well as their primary summative purpose.

Timetable

Past Exam Papers

General Notes

N/A

Welcome to Newcastle University Module Catalogue

This is where you will be able to find all key information about modules on your programme of study. It will help you make an informed decision on the options available to you within your programme.

You may have some queries about the modules available to you. Your school office will be able to signpost you to someone who will support you with any queries.

Disclaimer

The information contained within the Module Catalogue relates to the 2024 academic year.

In accordance with University Terms and Conditions, the University makes all reasonable efforts to deliver the modules as described.

Modules may be amended on an annual basis to take account of changing staff expertise, developments in the discipline, the requirements of external bodies and partners, and student feedback. Module information for the 2025/26 entry will be published here in early-April 2025. Queries about information in the Module Catalogue should in the first instance be addressed to your School Office.