Processing math: 32%

Summary of Standard Distributions

scope=“col” width=“225px” scope = “row” height=“75px” | Distribution

Parameter(s)

Mean

Variance

Distribution Function f(x)

When to use

scope = “row” height=“75px” | Bernoulli

p probability of success.

p

p(1p)

px(1p)1x

One trial with probability of success p and probability of failure 1p.

scope = “row” height=“75px” | Binomial

nnumber of Bernoulli Trials,pprobability of success.

np

np(1p)

\displaystyle\binom nx p^x(1-p)^{n-x}

n trials with probability of success p and probability of failure 1-p.

scope = “row” height=“75px” | Poisson

\begin{align} &\lambda \text{ the average rate} \qquad \textit{or} \\ &\lambda = np \text{ when approximating the} \\ &\text{ the binomial distribution.} \end{align}

\lambda

\lambda

\dfrac{\lambda^x e^{-\lambda}}{x}

When given an average rate or to approximating the binomial distribution when n is large and p is small.

scope = “row” height=“75px” | Normal

\begin{align} &\mu \text{ the mean,} \\ &\sigma^2 \text{ the variance.} \end{align}

\mu

\sigma ^2

\dfrac{1}{ \sigma \sqrt{2 \pi}} \mathrm{exp}\left(-\frac{1}{2} \left( \frac{(x-\mu)}{ \sigma} \right)^2 \right)

N/A

scope = “row” height=“75px” | Standard Normal

N/A

0

1

\dfrac{1}{\sqrt{2 \pi} }\mathrm{exp}\left(-\frac{1}{2}x^2\right)

When population mean and standard deviation are given.

scope = “row” height=“75px” | Student - t

v the degrees of freedom.

0

\dfrac{v}{v-2}

Very complicated and beyond the scope of this wiki

N/A

Test Yourself

Test yourself: Numbas quiz on probability