School of Engineering

Staff Profile

Dr Jonathan McDonough

Research Associate

Background

Education

  • PhD Chemical Engineering, Newcastle University, 2013-2017
  • MEng (Hons) Chemical Engineering, Newcastle University, 2009-2013


Professional Memberships

  • Associate Member of IChemE


Awards

  • National SET award winner for best chemical engineering student, sponsored by AWE (2013)
  • MEng Top Student Award (2013)
  • William Benedict Coleman Scholarship recipient (2010)


Research

Research Interests:

  • Reaction engineering
  • Flow chemistry
  • Fluid mechanics
  • Reactor design
  • Meso/micro-fluidics
  • 3D printing
  • Carbon capture


Current Research Project:

Novel adsorbents applied to integrated energy-efficient industrial CO2 capture [EP/N024540/1]

The UK Government has an ambitious target to reduce CO2 emissions by 80% by 2050. Industrial processes account for 25% of total EU CO2 emissions, and moreover, they are already operating at or close to the theoretical limits of efficiency. Therefore, CO2 capture and storage (CCS) is the only technology that can deliver the required emission reductions. However, efficiency and capital cost penalties associated with CO2 capture are hindering the deployment of CCS. There is an opportunity here for industrial CCS to operate at a wider range of temperatures and to integrate available thermal streams with heat required for on-site sorbent regeneration. 


This multidisciplinary proposal unites leading engineers and scientists from the Universities of Heriot-Watt, Hull and Newcastle to realise our vision of integrating novel hydrotalcite solid sorbents with advanced heat integration processes for industrial CO2 capture. Hydrotalcite materials present a big potential for industrial CCS, as they show faster kinetics and better regenerability over other high temperature sorbents; however, their application in industrial capture processes remains largely unexplored. We will research novel methodologies to enhance and tailor performance of hydrotalcites for CO2 capture over a wide range of conditions needed in industrial processes. We will also address the challenge of designing a suitable process that combines the roles of heat management (heat recovery for desorption) and mass transfer (ad- and desorption) across a range of process conditions (temperature, pressure, humidity, gas constituents) with a degree of flexibility that is economically and technically viable.

 

Links:

Publications