School of Mathematics, Statistics and Physics

Staff Profile

Dr Tamara Rogers

Reader in Computational Astrophysics

Background

Research Interests: 

Google Scholar

Astrophysical fluids and MHD, particularly applied to the interiors of stars and giant planets.

For more information see my website at : www.solarphysicist.com

Qualifications: 

Ph.D. 2006 Astronomy & Astrophysics, University of California, Santa Cruz

B.S. 1999 Physics and Astronomy, University of Arizona, Magna Cum Laude


Previous Positions: 

Assistant Professor, Department of Planetary Sciences, University of Arizona, 2008-2014

NSF Astronomy & Astrophysics Postdoctoral Fellow, NCAR, Boulder 2006-2008

Research

See www.solarphysicist.com 

Teaching

PHY1021 - Introductory Astrophysics

PHY3033 - Advanced Astrophysics

MAS3118 - Instabilities, Turbulence & Scaling


Publications

  • Rogers TM, McElwaine JN. On the Chemical Mixing Induced by Internal Gravity Waves (IGW). The Astrophysical Journal Letters 2017, 848(1).
  • Rogers T. Constraints on the magnetic field strength of HAT-P-7 b and other hot giant exoplanets. Nature Astronomy 2017, 1, 0131.
  • Rogers T, McElwaine JN. The Hottest Hot Jupiters May Host Atmospheric Dynamos. The Astrophysical Journal Letters 2017, 841(2), L26.
  • Aerts C, Simon-Diaz S, Bloemen S, Debosscher J, Papics PI, Bryson S, Still M, Moravveji E, Williamson MH, Grundahl F, MF Andersen, Antoci V, Palle PL, Christensen-Dalsgaard J, Rogers TM. Kepler sheds new and unprecedented light on the variability of a blue supergiant: Gravity waves in the O9.5Iab star HD 188209. Astronomy & Astrophysics 2017, 602, A32.
  • Rogers TM. On the differential rotation of massive main-sequence stars. The Astrophysical Journal. Letters 2015, 815(2), L20.
  • Aerts C, Rogers TM. Observational Signatures of Convectively Driven Waves in Massive Stars. Astrophysical Journal Letters 2015, 806(2), 1-5.
  • Rogers TM, Komacek TD. Magnetic Effects in Hot Jupiter Atmospheres. The Astrophysical Journal 2014, 794(2), 132.
  • Rogers TM, Showman AP. Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b. The Astrophysical Journal Letters 2014, 782(1), L4.
  • Rogers TM, Lin DNC. On Tidal Dissipation of Obliquity. The Astrophysical Journal Letters 2013, 769, L10.
  • Rogers TM, Lin DNC, McElwaine JN, Lau HHB. Internal Gravity Waves in Massive Stars I: Angular Momentum Transport. The Astrophysical Journal 2013, 772, 21.
  • Rogers TM, Lin DNC, Lau HHB. Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars. The Astrophysical Journal Letters 2012, 758, L6.
  • Rogers TM. On Limiting the Thickness of the Solar Tachocline. ApJ 2011, 733, 12.
  • Rogers TM. Toroidal Field Reversals and the Axisymmetric Tayler Instability. ApJ 2011, 735, 100.
  • Rogers TM, MacGregor KB. On the interaction of internal gravity waves with a magnetic field – II. Convective forcing. MNRAS 2011, 410, 946.
  • MacGregor KB, Rogers TM. Reflection and Ducting of Gravity Waves Inside the Sun. Solar Physics 2011.
  • Rogers TM, MacGregor KB. On the interaction of internal gravity waves with a magnetic field – I. Artificial wave forcing. MNRAS 2010, 401, 191-196.
  • Glatzmaier GA, Evonuk M, Rogers TM. Differential rotation in giant planets maintained by density-stratified turbulent convection. GAFD 2009.
  • Rogers TM, MacGregor KB, Glatzmaier GA. Nonlinear Dynamics of Gravity Wave Driven Flows in the Solar Radiative Interior. MNRAS 2008.
  • Rogers TM, Glatzmaier GA. Angular Momentum Transport by Gravity Waves in the Solar Interior. ApJ 2006, 653.
  • Rogers TM, Glatzmaier GA, Jones CA. Numerical Simulations of Penetration and Overshoot in the Sun. ApJ 2006, 653, 765.
  • Rogers TM, Glatzmaier GA. Gravity Waves in the Sun. MNRAS 2005, 364, 1135.
  • Rogers TM, Glatzmaier GA. Penetrative Convection within the Anelastic Approximation. ApJ 2005, 620, 432.
  • Rogers TM, Glatzmaier GA, Woosley SE. Simulations of two-dimensional turbulent convection in a density-stratified fluid. Phys. Rev E 2003, 67.
  • Pinto PA, Eastman RG, Rogers TM. A Test for the Nature of the Type Ia Supernova Explosion Mechanism. ApJ 2001, 551, 231.