MAR3040 : Further Ship Hydrodynamics
- Offered for Year: 2020/21
- Module Leader(s): Dr David Trodden
- Owning School: Engineering
- Teaching Location: Newcastle City Campus
Semesters
Semester 1 Credit Value: | 20 |
ECTS Credits: | 10.0 |
Aims
• Physical phenomena and associated hydrodynamic theory relating to advanced hull and propeller flow and hence resulting ship resistance and propulsion;
• Methods which are mainly computational and based on potential flow theory, to model the above mentioned hydrodynamic properties of a ship hull and its propulsor;
• Hydrodynamic design of a conventional ship hullform with specific emphasis on its forebody and afterbody sections;
• Hydrodynamic design of a conventional propeller and its performance analysis;
• Basic principles, design and performance characteristics of unconventional propulsors.
• Broaden and deepen understanding of ship manoeuvring performance and operability; includes preparing students with the skills required in the field of commercial hydrodynamic testing and data processing and making familiar the various technologies and operational risks relevant to the specific discipline.
• To learn how to carry out design integration using formal optimization methods; to acquire knowledge on how and when to model single/multiple objective problems; to understand how detailed considerations affect design.
Outline Of Syllabus
Nature of hull forms: Nature of ship flow (Resistance & Wake); basic theory for computational flow & resistance; Computational methods for prediction of flow around the hull and that of ship resistance; (CDF - software demonstration, if possible); Hydrodynamic bulbous bow and design; Hydrodynamic aft-body design.
Fundamental theories of propeller action (Momentum theory; blade element theory; Vortex theory); propeller design and analysis methods (lifting line design; blade section design; lifting surface analysis); Unconvential propulsors (an overview of principles, design and performance of some popular types of unconventional propulsors, e.g. Ducted propellers; freely rotating/fixed guide vanes; azimuthing podded propulsors etc).
Consideration of the design for manoeuvring performance from a wider perspective. The practicalities of hydrodynamic testing, measurement and uncertainties. The use and action of a range of manoeuvring devices are explored. The practical application of simulation will be explored together with numerical methods used for its implementation. Practical issues of operability will be explored together with subject such as human factors, considering how this impact on design for manoeuvring performance.
Classical optimisation methods, unconstrained optimisation, equality and multi-criteria approaches, first/second order SLP, integer variables, computing aspects, uncertainty in optimisation models, evolutionary algorithms.
Teaching Methods
Please note that module leaders are reviewing the module teaching and assessment methods for Semester 2 modules, in light of the Covid-19 restrictions. There may also be a few further changes to Semester 1 modules. Final information will be available by the end of August 2020 in for Semester 1 modules and the end of October 2020 for Semester 2 modules.
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Structured Guided Learning | Lecture materials | 36 | 1:00 | 36:00 | Non-synchronous Online Hours: Delivery of recorded lectures and learning materials |
Structured Guided Learning | Lecture materials | 27 | 1:00 | 27:00 | Non-Synchronous Online Hours - teaching materials, book chapters, notes, tutorials and quizzes |
Guided Independent Study | Assessment preparation and completion | 1 | 30:00 | 30:00 | Coursework |
Scheduled Learning And Teaching Activities | Small group teaching | 4 | 1:00 | 4:00 | Present-in-Person: Question and Answer sessions, numerical demonstrations |
Guided Independent Study | Reflective learning activity | 1 | 98:00 | 98:00 | Study and review of learning materials |
Scheduled Learning And Teaching Activities | Scheduled on-line contact time | 5 | 1:00 | 5:00 | On-line timetables Synchronous Learning: Tutorial, Question and Answer Sessions, Demonstrations |
Total | 200:00 |
Teaching Rationale And Relationship
Lectures in the classroom provide the student with general understanding of and familiarity to the fundamentals of advanced ship (hull), propulsor and manoeuvring device flows and associated computational tools; to estimate resistance and propulsor performance with these tools; to be able to perform hydrodynamic design of the critical parts of the hull and its propeller/rudders. Resistance and propulsion aspects of all ship types are covered in a broad, diverse and dynamic way. Aspects of hydrodynamic testing are covered with an aim of ensuring that students are familiar with what may be expected when contracting a testing facility for manoeuvring performance assessment. A variety of of manoeuvring devices are considered to ensure students are aware of the opportunities that exist when making design selections. Finally, the onward use of performance derivatives are explored including frequency domain and time domino type analysis including simulation; aiding students better understand the commercial implications for both hydrodynamic testing and maritime training uses.
Alternatives will be offered to students unable to be present-in-person due to the prevailing C-19 circumstances.
Students should consult their timetable for up-to-date delivery information.
Assessment Methods
Please note that module leaders are reviewing the module teaching and assessment methods for Semester 2 modules, in light of the Covid-19 restrictions. There may also be a few further changes to Semester 1 modules. Final information will be available by the end of August 2020 in for Semester 1 modules and the end of October 2020 for Semester 2 modules.
The format of resits will be determined by the Board of Examiners
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Essay | 1 | M | 100 | Coursework taking a maximum of 30 hours |
Assessment Rationale And Relationship
The coursework allows the students to demonstrate written communication, planning and organisation, problem solving, numeracy and computer literacy and associated cognitive skills. The Graduate Skills Framework entries indicated as 'A' are also assessed in this way.
Reading Lists
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- MAR3040's Timetable