Skip to main content


BGM2002 : Biochemistry and Genetics of Signalling and the Cell Cycle

  • Offered for Year: 2020/21
  • Module Leader(s): Dr Catherine Meplan
  • Lecturer: Prof. Susan Lindsay, Professor Jane Endicott, Professor Craig Robson, Professor Brendan Kenny, Professor Janet Quinn, Dr Simon Whitehall, Dr Helen Phillips, Professor Brian Morgan, Professor Neil Perkins
  • Owning School: Biomedical, Nutritional and Sports Scien
  • Teaching Location: Newcastle City Campus
Semester 1 Credit Value: 20
ECTS Credits: 10.0


This module aims to introduce signalling mechanisms and pathways with a specific focus on the regulation of the eukaryotic cell division cycle.
Specific aims are then:

1.To introduce the students to key concepts in signaling, within and between cells that take place during stress, cell cycle, cancer, development, apoptosis and bacterial infection.

2.To provide an overview of protein modifications (phosphorylation, ubiquitination, etc.) and their role in cell signaling.

3. To provide a knowledge and understanding of the tools available for the investigation of cell signaling and cell division, including the use of yeast as a model organism.
4. To demonstrate how biochemistry and genetics has provided information regarding the identity and function of proteins involved in the regulation of the cell division cycle.

5. To provide the opportunity for practical experience in common techniques for the manipulation of yeast.

6. To provide an opportunity to discuss the use of key signalling molecules as drug targets in the treatment of common diseases

Outline Of Syllabus

Signalling within and between cells is an essential part of many biological processes, from the functioning of the cell cycle to maintenance of homeostasis, development, response to stress and immune function. This module will: introduce common features and components of extra- and intracellular signalling pathways; describe modifications to proteins (covalent and non-covalent) that alter their activities and stability; provide expanded examples of signaling in the context of development, disease and stress states; explain the eukaryotic cell cycle and its regulation in both model yeast species and higher eukaryotes. The module will highlight some of the components that compromise signaling pathways and responses and their consequences for disease and development.

Examples of signaling that will be covered include:
Description of key cell cycle regulatory pathways and components
Oxidative stress
Signalling in cancer and combating cancer by targeting key cell cycle signaling pathways
Compromising signaling pathways during bacterial infection
Programmed cell death - apoptosis

Teaching Methods

Teaching Activities
Category Activity Number Length Student Hours Comment
Scheduled Learning And Teaching ActivitiesLecture261:0026:00N/A
Guided Independent StudyAssessment preparation and completion15:005:00Completion of practical write up
Scheduled Learning And Teaching ActivitiesPractical26:0012:001 practical run over 2x6 hour sessions. 2 academic staff involved.
Scheduled Learning And Teaching ActivitiesSmall group teaching21:002:00Class to be broken down into smaller groups for seminars.
Guided Independent StudyIndependent study1551:00155:00N/A
Teaching Rationale And Relationship

Lectures are used to impart new information in a concise manner regarding principles of the regulation of cell cycle and signalling pathways, as well as expanded examples of signalling pathways. The practical laboratory classes are designed to develop practical skills in techniques commonly used in biomedical science laboratories and to familiarize the students with the use of yeast as a model organism. Students will also be able to relate the theoretical learning and to the practical laboratory works in this module. Seminars will reinforce and support lecture material as well as provide a forum for analysis of data.

Assessment Methods

The format of resits will be determined by the Board of Examiners

Description Length Semester When Set Percentage Comment
Written Examination1201A70MCQ 50%, Essay 50%, 1 question from a choice of 2.
Other Assessment
Description Semester When Set Percentage Comment
Practical/lab report1M15Structured write up based on the laboratory practical associated with the module, including data analysis (4 pages)
Essay1M15Timed Essay under exam conditions (40 minutes)
Assessment Rationale And Relationship

In course:

Timed essay question will provide students the opportunity to practice writing under exam conditions, and to demonstrate a capacity to integrate, discuss and compare underlying principles of cell cycle and signalling pathways regulation.

The practical write up will allow students to demonstrate their capacity to perform and interpret experimental data using yeast as a model organism.


The MCQ will allow to test student’s breadth of knowledge of taught materials.

The essay will test understanding, allowing students to demonstrate a capacity to integrate, discuss and compare underlying principles of cell cycle and signalling pathways regulation

Reading Lists