Skip to main content

Module

MEC2003 : Applications of Thermofluid Dynamics

  • Offered for Year: 2020/21
  • Module Leader(s): Professor Nilanjan Chakraborty
  • Lecturer: Dr Prodip Das, Dr Richard Whalley
  • Owning School: Engineering
  • Teaching Location: Newcastle City Campus
Semesters
Semester 1 Credit Value: 10
Semester 2 Credit Value: 10
ECTS Credits: 10.0

Aims

The aim is to provide a broadly-based extension of core knowledge and skills in this field of engineering science, with applications of more advanced thermofluid dynamics for students who have studied this topic at university level for at least one year previously, covering thermodynamics, fluid mechanics and turbomachines.

Outline Of Syllabus

Thermodynamics: Carnot cycle, second law of thermodynamics, Kelvin-Planck and Clausius statements, origin of irreversibilities, entropy, TdS relationships, properties of liquids and gases, process and cycle representation on T-s and h-s charts; turbines, compressors and isentropic efficiency; simple steam and gas turbine cycles (Rankine and Brayton), refrigeration cycles, combined cycles.

Heat Transfer: Conduction, Radiation and Convection, introduction to heat exchanges.

Mechanics of Fluids: Control volume linear momentum equation, momentum function and applications (reaction, propulsion etc.). Dimensional analysis and similarity, scale modelling; Laminar and turbulent pipe flow, Reynolds number and transition; Pipe flow resistance, friction factor and Darcy-Weisbach equation, friction factors for laminar and turbulent pipe flows (Moody diagram), local losses; pipe systems, losses in series, energy line and hydraulic gradient.

Fluid Machinery: Turbomachinery: principles of energy exchange, machine losses and characteristics; interaction with external system and operating point; non-dimensional groups. Cavitation.

Teaching Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Assessment Methods

Module leaders are revising this content in light of the Covid 19 restrictions.
Revised and approved detail information will be available by 17 August.

Reading Lists

Timetable