Skip to main content

Module

PHY1038 : Introductory Algebra

  • Offered for Year: 2024/25
  • Module Leader(s): Professor Tamara Rogers
  • Owning School: Mathematics, Statistics and Physics
  • Teaching Location: Newcastle City Campus
Semesters

Your programme is made up of credits, the total differs on programme to programme.

Semester 1 Credit Value: 10
ECTS Credits: 5.0
European Credit Transfer System

Aims

This module introduces the essential concepts of algebra relevant for the physical sciences, including complex numbers, vectors and matrices.

Outline Of Syllabus

Complex numbers: arithmetic, the complex plane, polar form, Euler's formula, de Moivre's theorem, roots of unity.

Vectors: sums, products (scalar, vector, triple), orthogonality, equations of lines and planes.

Linear algebra: matrix addition, multiplication and inversion, eigenvalues and eigenvectors, diagonalisation, determinants, Cramer's rule, Gaussian elimination.

Teaching Methods

Teaching Activities
Category Activity Number Length Student Hours Comment
Guided Independent StudyAssessment preparation and completion251:0025:00Completion of in course assignments
Scheduled Learning And Teaching ActivitiesLecture21:002:00Revision Lectures
Scheduled Learning And Teaching ActivitiesLecture201:0020:00Formal Lectures
Guided Independent StudyIndependent study531:0053:00Preparation time for lectures, background reading, coursework review, examination revision
Total100:00
Jointly Taught With
Code Title
MAS1610Introductory Algebra (for Psychology students)
Teaching Rationale And Relationship

The teaching methods are appropriate to allow students to develop a wide range of skills, from understanding basic concepts and facts to higher-order thinking.

Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving general feedback on marked work.

Assessment Methods

The format of resits will be determined by the Board of Examiners

Exams
Description Length Semester When Set Percentage Comment
Written Examination1201A60N/A
Exam Pairings
Module Code Module Title Semester Comment
Introductory Algebra (for Psychology students)1N/A
Other Assessment
Description Semester When Set Percentage Comment
Prob solv exercises1M10Problem-solving exercise assessment
Prob solv exercises1M10Problem-solving exercise assessment
Prob solv exercises1M10Problem-solving exercise assessment
Prob solv exercises1M10Problem-solving exercise assessment
Assessment Rationale And Relationship

A substantial formal unseen examination is appropriate for the assessment of the material in this module. The format of the examination will enable students to reliably demonstrate their own knowledge, understanding and application of learning outcomes. The assurance of academic integrity forms a necessary part of programme accreditation.

Examination problems may require a synthesis of concepts and strategies from different sections, while they may have more than one ways for solution. The examination time allows the students to test different strategies, work out examples and gather evidence for deciding on an effective strategy, while carefully articulating their ideas and explicitly citing the theory they are using.

The coursework assignments allow the students to develop their problem solving techniques, to practise the methods learnt in the module, to assess their progress and to receive feedback; these assessments have a secondary formative purpose as well as their primary summative purpose.

Reading Lists

Timetable